Mostrar el registro sencillo del ítem

dc.contributor.authorIbrahim, Wan Nur Hidayah
dc.contributor.authorAnuar, Syahid
dc.contributor.authorSelamat, Ali
dc.contributor.authorKrejcar, Ondrej
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorHerrera-Viedma, Enrique
dc.contributor.authorFujita, Hamido
dc.date2021
dc.date.accessioned2021-06-08T11:27:30Z
dc.date.available2021-06-08T11:27:30Z
dc.identifier.issn2169-3536
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11453
dc.description.abstractA botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being detected by a security system. The traditional method of detecting botnets commonly used signature-based analysis unable to detect unseen botnets. The behavior-based analysis seems like a promising solution to the current trends of botnets that keep evolving. This paper proposes a multilayer framework for botnet detection using machine learning algorithms that consist of a filtering module and classification module to detect the botnet's command and control server. We highlighted several criteria for our framework, such as it must be structure-independent, protocol-independent, and able to detect botnet in encapsulated technique. We used behavior-based analysis through flow-based features that analyzed the packet header by aggregating it to a 1-s time. This type of analysis enables detection if the packet is encapsulated, such as using a VPN tunnel. We also extend the experiment using different time intervals, but a 1-s time interval shows the most impressive results. The result shows that our botnet detection method can detect up to 92% of the f-score, and the lowest false-negative rate was 1.5%.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Accesses_ES
dc.relation.ispartofseries;vol. 9
dc.relation.urihttps://ieeexplore.ieee.org/document/9359784es_ES
dc.rightsopenAccesses_ES
dc.subjectBehavior-based analysises_ES
dc.subjectbotnetes_ES
dc.subjectflow-based feature selectiones_ES
dc.subjectk-nearest neighbores_ES
dc.subjectstructure independentes_ES
dc.subjectScopuses_ES
dc.subjectWOS(2)es_ES
dc.titleMultilayer Framework for Botnet Detection Using Machine Learning Algorithmses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2021.3060778


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem