Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorYáñez, Dionisio F.
dc.contributor.authorSicilia, Juan Antonio
dc.date2020-04
dc.date.accessioned2020-08-05T09:50:05Z
dc.date.available2020-08-05T09:50:05Z
dc.identifier.citationArgyros, I.K., Magreñán, Á.A., Yáñez, D.F. et al. A new technique for studying the convergence of Newton’s solver with real life applications. J Math Chem 58, 816–830 (2020). https://doi.org/10.1007/s10910-020-01119-0es_ES
dc.identifier.issn0259-9791
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10345
dc.description.abstractThe convergence domain for both the local and semilocal case of Newton’s method for Banach space valued operators is small in general. There is a plethora of articles that have extended the convergence criterion due to Kantorovich under variations of the convergence conditions. In this article, we use a different approach than before to increase the convergence domain, and without necessarily using conditions on the inverse of the Fréchet-derivative of the operator involved. Favorable to us applications are given to test the convergence criteria.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 58, nº 4
dc.relation.urihttps://link.springer.com/article/10.1007/s10910-020-01119-0es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectbanach spacees_ES
dc.subjectconvergencees_ES
dc.subjectfréchet-derivativees_ES
dc.subjectNewton’s methodes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleA new technique for studying the convergence of Newton’s solver with real life applicationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-020-01119-0


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem