Mostrar el registro sencillo del ítem
A new technique for studying the convergence of Newton’s solver with real life applications
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Magreñán, Á. Alberto | |
dc.contributor.author | Yáñez, Dionisio F. | |
dc.contributor.author | Sicilia, Juan Antonio | |
dc.date | 2020-04 | |
dc.date.accessioned | 2020-08-05T09:50:05Z | |
dc.date.available | 2020-08-05T09:50:05Z | |
dc.identifier.citation | Argyros, I.K., Magreñán, Á.A., Yáñez, D.F. et al. A new technique for studying the convergence of Newton’s solver with real life applications. J Math Chem 58, 816–830 (2020). https://doi.org/10.1007/s10910-020-01119-0 | es_ES |
dc.identifier.issn | 0259-9791 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/10345 | |
dc.description.abstract | The convergence domain for both the local and semilocal case of Newton’s method for Banach space valued operators is small in general. There is a plethora of articles that have extended the convergence criterion due to Kantorovich under variations of the convergence conditions. In this article, we use a different approach than before to increase the convergence domain, and without necessarily using conditions on the inverse of the Fréchet-derivative of the operator involved. Favorable to us applications are given to test the convergence criteria. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Journal of Mathematical Chemistry | es_ES |
dc.relation.ispartofseries | ;vol. 58, nº 4 | |
dc.relation.uri | https://link.springer.com/article/10.1007/s10910-020-01119-0 | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | banach space | es_ES |
dc.subject | convergence | es_ES |
dc.subject | fréchet-derivative | es_ES |
dc.subject | Newton’s method | es_ES |
dc.subject | Scopus | es_ES |
dc.subject | JCR | es_ES |
dc.title | A new technique for studying the convergence of Newton’s solver with real life applications | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1007/s10910-020-01119-0 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |