• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Prediction of the penetration of drugs by Artificial Neural Networks

    Autor: 
    Gonzalez-Temes, M.
    ;
    Astray, Gonzalo
    ;
    Morales, Jorge
    ;
    Mejuto, Juan C
    ;
    Astray, Gonzalo
    Fecha: 
    2013
    Palabra clave: 
    component; neural networks; polydimethylsiloxane; molecular descriptor; permeability; WOS(2); Scopus(2)
    Revista / editorial: 
    Proceedings of the 2013 8TH Iberian Conference on Information Systems and Technologies (CISTI 2013)
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/9863
    Dirección web: 
    https://ieeexplore.ieee.org/document/6615859
    Resumen:
    In this study an Artificial Neural Network was developed to predict the penetration of drugs through a polydimethylsiloxane membrane by molecular descriptors. A total of 245 drugs and their absorption experimentally determined values were arranged into various data sets to perform training and validation of the different implemented neural networks. Logarithms of the maximum steady-state flux (log J) values were correlated with four input variables; i) Count fo H-Acceptor Sites (CHA), ii) H-Donors Charged Surface Area (HDCA), iii) Gravitational index (G b ) and iv) Weighted Positive Charged Partial Surface Area (WPSA-2). Besides these, other neural networks were implemented with an extra input variable, which measuring the similarity of the different drugs (Distance). All developed neural networks present a high squared correlation coefficient with a low root-mean-square error, and they improve the MLR prediction model in 24%.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    53
    27
    41
    40
    102
    111
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Percolation Threshold of AOT Microemulsions with n-Alkyl Acids as Additives Prediction by Means of Artificial Neural Networks 

      Moldes, Óscar A; Astray, Gonzalo ; Cid, Antonio; Iglesias-Otero, Manuel A; Morales, Jorge; Mejuto, Juan C (Tenside Surfactants Detergents, 09/2013)
      Different artificial neural networks architectures have been assayed to predict percolation temperature of AOT/iC(8)/H2O microemulsions in the presence of n-alkyl acids with a chain length between 0 and 24 carbons, using ...
    • Density prediction of ternary mixtures of ethanol + water + ionic liquid using backpropagation artificial neural networks 

      Morales, Jorge; Moldes, Óscar A; Iglesias-Otero, Manuel A; Mejuto, Juan C; Astray, Gonzalo ; Cid, Antonio (Ionic Liquid-Based Surfactant Science: Formulation, Characterization, and Applications, 08/2015)
      New insights in the prediction of density in ternary mixtures of ethanol + water + ionic liquid using backpropagation artificial neural network (ANN) have been investigated by our research group. These predictions have ...
    • First computational design using lambda-superstrings and in vivo validation of SARS-CoV-2 vaccine 

      Martinez, Luis; Malaina, Iker; Salcines-Cuevas, David; Teran-Navarro, Héctor; Zeoli, Andrea; Alonso, Santos; De la Fuente, Ildefonso M.; Gonzalez-Lopez, Elena; Ocejo-Vinyals, J. Gonzalo; Gozalo-Marguello, Monica; Calvo-Montes, Jorge; Álvarez-Domínguez, Carmen (Scientific reports, 2022)
      Coronavirus disease 2019 (COVID-19) is the greatest threat to global health at the present time, and considerable public and private effort is being devoted to fighting this recently emerged disease. Despite the undoubted ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja