Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorLegaz, M. J.
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorMoreno, D.
dc.contributor.authorSicilia, Juan Antonio (1)
dc.date2019-05
dc.date.accessioned2019-06-13T08:52:17Z
dc.date.available2019-06-13T08:52:17Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/8427
dc.description.abstractWe present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the first Frechet-derivative of the operator involved. Earlier results involve Lipschitz-type hypotheses on higher than the first Frechet-derivative. The applicability of these methods is extended this way and under less computational cost. Special cases and applications are provided to show that these new results can apply to solve these equations.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 57, nº 5
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs10910-019-01004-5es_ES
dc.rightsopenAccesses_ES
dc.subjectnormed spacees_ES
dc.subjectlocal convergencees_ES
dc.subjectinexact newton-like methodses_ES
dc.subjectfrechet derivativees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExtended local convergence for some inexact methods with applicationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-019-01004-5


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem