• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Advances in the Semilocal Convergence of Newton's Method with Real-World Applications

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto
    ;
    Orcos, Lara
    ;
    Sarría, Íñigo (1)
    Fecha: 
    24/03/2019
    Palabra clave: 
    banach space; newton's method; semi-local convergence; kantorovich hypothesis; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/8406
    DOI: 
    https://doi.org/10.3390/math7030299
    Dirección web: 
    https://www.mdpi.com/2227-7390/7/3/299
    Open Access
    Resumen:
    The aim of this paper is to present a new semi-local convergence analysis for Newton's method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies and our new idea of restricted convergence domains, we extend the applicability of Newton's method as follows: The convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. These advantages are obtained using the same information as before, since new Lipschitz constant are tighter and special cases of the ones used before. Numerical examples and applications are used to test favorable the theoretical results to earlier ones.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    70
    74
    22
    18
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Unified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara (1); Sarría, Íñigo (1) (Mathematics, 05/2019)
      Under the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball ...
    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara (1); Sarría, Íñigo (1); Sicilia, Juan Antonio (1) (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...
    • Study of a high order family: Local convergence and dynamics 

      Amorós, Cristina (1); Argyros, Ioannis K; González-Crespo, Rubén (1); Magreñán, Á. Alberto; Orcos, Lara (1); Sarría, Íñigo (1) (Mathematics, 01/03/2019)
      The study of the dynamics and the analysis of local convergence of an iterative method, when approximating a locally unique solution of a nonlinear equation, is presented in this article. We obtain convergence using a ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja