Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorOrcos, Lara
dc.contributor.authorSarría, Íñigo
dc.date2019-03-24
dc.date.accessioned2019-06-07T08:44:36Z
dc.date.available2019-06-07T08:44:36Z
dc.identifier.issn2227-7390
dc.identifier.urihttps://reunir.unir.net/handle/123456789/8406
dc.description.abstractThe aim of this paper is to present a new semi-local convergence analysis for Newton's method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies and our new idea of restricted convergence domains, we extend the applicability of Newton's method as follows: The convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. These advantages are obtained using the same information as before, since new Lipschitz constant are tighter and special cases of the ones used before. Numerical examples and applications are used to test favorable the theoretical results to earlier ones.es_ES
dc.language.isoenges_ES
dc.publisherMathematicses_ES
dc.relation.ispartofseries;vol. 7, nº 3
dc.relation.urihttps://www.mdpi.com/2227-7390/7/3/299es_ES
dc.rightsopenAccesses_ES
dc.subjectbanach spacees_ES
dc.subjectnewton's methodes_ES
dc.subjectsemi-local convergencees_ES
dc.subjectkantorovich hypothesises_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleAdvances in the Semilocal Convergence of Newton's Method with Real-World Applicationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.3390/math7030299


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem