• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Hyperparameter Optimization for Image Recognition over an AR-Sandbox Based on Convolutional Neural Networks Applying a Previous Phase of Segmentation by Color-Space

    Autor: 
    Restrepo Rodríguez, Andrés Ovidio
    ;
    Casas Mateus, Daniel Esteban
    ;
    Gaona-García, Paulo Alonso
    ;
    Montenegro-Marín, Carlos
    ;
    González-Crespo, Rubén (1)
    Fecha: 
    12/2018
    Palabra clave: 
    image acquisition; image processing; image recognition; convolutional neural network; dataset; loss function; accuracy; ROC curve; AR-Sandbox; random search; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/7983
    DOI: 
    http://dx.doi.org/10.3390/sym10120743
    Dirección web: 
    https://www.mdpi.com/2073-8994/10/12/743
    Open Access
    Resumen:
    Immersive techniques such as augmented reality through devices such as the AR-Sandbox and deep learning through convolutional neural networks (CNN) provide an environment that is potentially applicable for motor rehabilitation and early education. However, given the orientation towards the creation of topographic models and the form of representation of the AR-Sandbox, the classification of images is complicated by the amount of noise that is generated in each capture. For this reason, this research has the purpose of establishing a model of a CNN for the classification of geometric figures by optimizing hyperparameters using Random Search, evaluating the impact of the implementation of a previous phase of color-space segmentation to a set of tests captured from the AR-Sandbox, and evaluating this type of segmentation using similarity indexes such as Jaccard and Sorensen-Dice. The aim of the proposed scheme is to improve the identification and extraction of characteristics of the geometric figures. Using the proposed method, an average decrease of 39.45% to a function of loss and an increase of 14.83% on average in the percentage of correct answers is presented, concluding that the selected CNN model increased its performance by applying color-space segmentation in a phase that was prior to the prediction, given the nature of multiple pigmentation of the AR-Sandbox.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    160
    83
    39
    63
    2
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Emotional characterization of children through a learning environment using learning analytics and AR-Sandbox 

      Restrepo Rodríguez, Andrés Ovidio; Ariza Riano, Maddyzeth; Gaona-García, Paulo Alonso; Montenegro-Marin, Carlos Enrique; González-Crespo, Rubén (1); Wu, Xing (Journal of Ambient Intelligence and Humanized Computing, 03/2020)
      Identifying emotions experienced by students in a learning environment contributes to measuring the impact when technologies such as augmented reality (AR) are implemented in the educational field. The most frequent methods ...
    • Image Classification Methods Applied in Immersive Environments for Fine Motor Skills Training in Early Education 

      Gaona-García, Paulo Alonso; Montenegro-Marin, Carlos Enrique; Sarría Martínez-Mendivil, Íñigo; Restrepo Rodríguez, Andrés Ovidio; Ariza Riaño, Maddyzeth (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2019)
      Fine motor skills allow to carry out the execution of crucial tasks in people's daily lives, increasing their independence and self-esteem. Among the alternatives for working these skills, immersive environments are found ...
    • Image Classification Methods Applied in Immersive Environments for Fine Motor Skills Training in Early Education 

      Restrepo Rodríguez, Andrés Ovidio; Ariza Riano, Maddyzeth; Gaona-García, Paulo Alonso; Montenegro-Marin, Carlos Enrique; Sarría, Íñigo (1) (International Journal of Interactive Multimedia and Artificial Intelligence, 12/2019)
      Fine motor skills allow to early out the execution of crucial tasks in people's daily lives, increasing their independence and self-esteem. Among the alternatives for working these skills. immersive environments are found ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja