Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorRainer, J Javier
dc.contributor.authorSicilia, Juan Antonio
dc.date2018-08
dc.date.accessioned2018-07-10T14:55:51Z
dc.date.available2018-07-10T14:55:51Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/6653
dc.description.abstractWe study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative although only the first derivative appears in these methods. Hence, the applicability of the method is expanded. Finally, we solve the problem of the fractional conversion in the ammonia process showing the applicability of the theoretical results.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 56, nº 7
dc.relation.urihttps://link.springer.com/article/10.1007/s10910-018-0856-yes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectNewton-like methodes_ES
dc.subjectlocal convergencees_ES
dc.subjectstolarky meanses_ES
dc.subjectgini meanses_ES
dc.subjectefficiency indexes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleBall convergence of a sixth-order Newton-like method based on means under weak conditionses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-018-0856-y


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem