Starting points for Newton’s method under a center Lipschitz condition for the second derivative
Autor:
Ezquerro, J A
; Hernández-Verón, M A
; Magreñán, Á. Alberto
Fecha:
03/2018Palabra clave:
Revista / editorial:
Journal of Computational and Applied MathematicsTipo de Ítem:
Articulo Revista IndexadaResumen:
We analyze the semilocal convergence of Newton's method under a center Lipschitz condition for the second derivative of the operator involved different from that used by other authors until now. In particular, we propose to center the Lipschitz condition for the second derivative in a different point from that where Newton's method starts. This allows us to obtain different starting points for Newton's method and modify the domain of starting points. (C) 2016 Elsevier B.V. All rights reserved.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
25 |
122 |
70 |
30 |
41 |
31 |
84 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Extending the domain of starting points for Newton's method under conditions on the second derivative
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 10/2018)In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ... -
Convergence of Newton's method under Vertgeim conditions: new extensions using restricted convergence domains
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Mathematical Chemistry, 08/2017)We present new sufficient convergence conditions for the semilocal convergence of Newton’s method to a locally unique solution of a nonlinear equation in a Banach space. We use Hölder and center Hölder conditions, instead ... -
Enlarging the convergence domain of secant-like methods for equations
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Hilout, S; Magreñán, Á. Alberto (Taiwanese Journal of Mathematics, 04/2015)We present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's ...