• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Starting points for Newton’s method under a center Lipschitz condition for the second derivative

    Autor: 
    Ezquerro, J A
    ;
    Hernández-Verón, M A
    ;
    Magreñán, Á. Alberto
    Fecha: 
    03/2018
    Palabra clave: 
    Newton’s method; semilocal convergence; majorizing sequence; error estimates; region of accessibility; integral equation; JCR; Scopus
    Revista / editorial: 
    Journal of Computational and Applied Mathematics
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/6365
    DOI: 
    https://doi.org/10.1016/j.cam.2016.12.013
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0377042716306239
    Resumen:
    We analyze the semilocal convergence of Newton's method under a center Lipschitz condition for the second derivative of the operator involved different from that used by other authors until now. In particular, we propose to center the Lipschitz condition for the second derivative in a different point from that where Newton's method starts. This allows us to obtain different starting points for Newton's method and modify the domain of starting points. (C) 2016 Elsevier B.V. All rights reserved.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    25
    122
    70
    30
    41
    31
    85
    114
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Extending the domain of starting points for Newton's method under conditions on the second derivative 

      Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 10/2018)
      In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...
    • Convergence of Newton's method under Vertgeim conditions: new extensions using restricted convergence domains 

      Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Mathematical Chemistry, 08/2017)
      We present new sufficient convergence conditions for the semilocal convergence of Newton’s method to a locally unique solution of a nonlinear equation in a Banach space. We use Hölder and center Hölder conditions, instead ...
    • Enlarging the convergence domain of secant-like methods for equations 

      Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Hilout, S; Magreñán, Á. Alberto (Taiwanese Journal of Mathematics, 04/2015)
      We present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja