Enlarging the convergence domain of secant-like methods for equations
Autor:
Argyros, Ioannis K
; Ezquerro, J A
; Hernández-Verón, M A
; Hilout, S
; Magreñán, Á. Alberto
Fecha:
04/2015Palabra clave:
Revista / editorial:
Taiwanese Journal of MathematicsTipo de Ítem:
Articulo Revista IndexadaResumen:
We present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's method and other popular methods as special cases. The convergence analysis is based on our idea of recurrent functions. Using more precise majorizing sequences than before we obtain weaker convergence criteria. These advantages are obtained because we use more precise estimates for the upper bounds on the norm of the inverse of the linear operators involved than in earlier studies. Numerical examples are given to illustrate the advantages of the new approaches.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
46 |
108 |
55 |
22 |
35 |
33 |
43 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Extending the domain of starting points for Newton's method under conditions on the second derivative
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 10/2018)In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ... -
Convergence of Newton's method under Vertgeim conditions: new extensions using restricted convergence domains
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Mathematical Chemistry, 08/2017)We present new sufficient convergence conditions for the semilocal convergence of Newton’s method to a locally unique solution of a nonlinear equation in a Banach space. We use Hölder and center Hölder conditions, instead ... -
Starting points for Newton’s method under a center Lipschitz condition for the second derivative
Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 03/2018)We analyze the semilocal convergence of Newton's method under a center Lipschitz condition for the second derivative of the operator involved different from that used by other authors until now. In particular, we propose ...