• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Extending the convergence domain of the Secant and Moser method in Banach Space

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto (1)
    Fecha: 
    12/2015
    Palabra clave: 
    Newton's method; secant method; Moser method; semilocal convergence; recurrent relations; banach space; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5721
    DOI: 
    http://dx.doi.org/10.1016/j.cam.2015.05.005
    Dirección web: 
    http://www.sciencedirect.com/science/article/pii/S0377042715002782?via%3Dihub
    Resumen:
    We present a new semilocal convergence analysis for the Secant and the Moser method in order to approximate a solution of an equation in a Banach space setting. Using the method of recurrent relations and weaker sufficient convergence criteria than in earlier studies such as Amat et al. (2014), Hernandez and Rubio (2007), Hernandez and Rubio (1999) and Hernandez and Rubio (2002) we increase the convergence domain of these methods. The advantages are also obtained under less computational cost than in Amat et al. (2014), Hernandez and Rubio (2007), Hernandez and Rubio (1999) and Hernandez and Rubio (2002). Numerical examples where the older convergence criteria are not satisfied but the new convergence criteria are satisfied are also provided in this study. (C) 2015 Elsevier B.V. All rights reserved.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    24
    124
    78
    31
    12
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto (1); Sarría, Íñigo (1); González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Extending the domain of starting points for Newton's method under conditions on the second derivative 

      Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 10/2018)
      In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...
    • Optimizing the applicability of a theorem by F. Potra for Newton-like methods 

      Magreñán, Á. Alberto (1); Argyros, Ioannis K (Applied Mathematics and Computation, 09/2014)
      We present a new sufficient semilocal convergence conditions for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja