Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2015-12
dc.date.accessioned2017-10-11T15:41:24Z
dc.date.available2017-10-11T15:41:24Z
dc.identifier.issn1879-1778
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5721
dc.description.abstractWe present a new semilocal convergence analysis for the Secant and the Moser method in order to approximate a solution of an equation in a Banach space setting. Using the method of recurrent relations and weaker sufficient convergence criteria than in earlier studies such as Amat et al. (2014), Hernandez and Rubio (2007), Hernandez and Rubio (1999) and Hernandez and Rubio (2002) we increase the convergence domain of these methods. The advantages are also obtained under less computational cost than in Amat et al. (2014), Hernandez and Rubio (2007), Hernandez and Rubio (1999) and Hernandez and Rubio (2002). Numerical examples where the older convergence criteria are not satisfied but the new convergence criteria are satisfied are also provided in this study. (C) 2015 Elsevier B.V. All rights reserved.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Computational and Applied Mathematicses_ES
dc.relation.ispartofseries;vol. 290
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0377042715002782?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectNewton's methodes_ES
dc.subjectsecant methodes_ES
dc.subjectMoser methodes_ES
dc.subjectsemilocal convergencees_ES
dc.subjectrecurrent relationses_ES
dc.subjectbanach spacees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExtending the convergence domain of the Secant and Moser method in Banach Spacees_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1016/j.cam.2015.05.005


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem