Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorEzquerro, J A
dc.contributor.authorHernández-Verón, M A
dc.contributor.authorHilout, S
dc.contributor.authorMagreñán, Á. Alberto (1)
dc.description.abstractWe present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's method and other popular methods as special cases. The convergence analysis is based on our idea of recurrent functions. Using more precise majorizing sequences than before we obtain weaker convergence criteria. These advantages are obtained because we use more precise estimates for the upper bounds on the norm of the inverse of the linear operators involved than in earlier studies. Numerical examples are given to illustrate the advantages of the new approaches.es_ES
dc.publisherTaiwanese Journal of Mathematicses_ES
dc.relation.ispartofseries;vol. 19, nº 2
dc.subjectsecant-like methodses_ES
dc.subjectNewton's methodes_ES
dc.subjectthe secant methodes_ES
dc.subjectmajorizing sequencees_ES
dc.subjectsemilocal convergencees_ES
dc.subjectdivided difference operatores_ES
dc.subjectnonlinear equationes_ES
dc.subjectbanach spacees_ES
dc.titleEnlarging the convergence domain of secant-like methods for equationses_ES
dc.typeArticulo Revista Indexadaes_ES

Ficheros en el ítem


No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem