• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in banach spaces

    Autor: 
    Argyros, Ioannis K
    ;
    Santhosh, George
    ;
    Magreñán, Á. Alberto
    Fecha: 
    01/2015
    Palabra clave: 
    family of third order method; Newton-like methods; banach space; semilocal convergence; majorizing sequence; recurrent relations; recurrent functions; JCR; Scopus
    Revista / editorial: 
    Journal of the Korean Mathematical Society
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5618
    DOI: 
    http://dx.doi.org/10.4134/JKMS.2015.52.1.023
    Dirección web: 
    http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=DBSHBB_2015_v52n1_23
    Open Access
    Resumen:
    We present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica. and Neta. These authors extended earlier results by Kou, Li and others. Our convergence analysis extends the applicability of these methods under less computational cost and weaker convergence criteria., Numerical examples are also presented to show that the earlier results cannot apply to solve these equations.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    44
    152
    128
    29
    58
    60
    13427
    244
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Extending the mesh independence for solving nonlinear equations using restricted domains 

      Argyros, Ioannis K; Sheth, Soham M.; Younis, Rami M.; Magreñán, Á. Alberto ; George, Santhosh (International Journal of Applied and Computational Mathematics, 12/2017)
      The mesh independence principle states that, if Newton’s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process ...
    • Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high 

      Argyros, Ioannis K; George, Santhosh; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 07/2015)
      We present a local convergence analysis for general multi-point-Chebyshev-Halley-type methods (MMCHTM) of high convergence order in order to approximate a solution of an equation in a Banach space setting. MMCHTM includes ...
    • Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields 

      Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)
      The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja