Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorSanthosh, George
dc.contributor.authorMagreñán, Á. Alberto
dc.date2015-01
dc.date.accessioned2017-10-03T15:31:24Z
dc.date.available2017-10-03T15:31:24Z
dc.identifier.issn2234-3008
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5618
dc.description.abstractWe present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica. and Neta. These authors extended earlier results by Kou, Li and others. Our convergence analysis extends the applicability of these methods under less computational cost and weaker convergence criteria., Numerical examples are also presented to show that the earlier results cannot apply to solve these equations.es_ES
dc.language.isoenges_ES
dc.publisherJournal of the Korean Mathematical Societyes_ES
dc.relation.ispartofseries;vol. 52, nº 1
dc.relation.urihttp://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=DBSHBB_2015_v52n1_23es_ES
dc.rightsopenAccesses_ES
dc.subjectfamily of third order methodes_ES
dc.subjectNewton-like methodses_ES
dc.subjectbanach spacees_ES
dc.subjectsemilocal convergencees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectrecurrent relationses_ES
dc.subjectrecurrent functionses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExpanding the convergence domain for Chun-Stanica-Neta family of third order methods in banach spaceses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.4134/JKMS.2015.52.1.023


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem