• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Extending the applicability of the local and semilocal convergence of Newton's method

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto
    Fecha: 
    01/2017
    Palabra clave: 
    Newton’s method; banach space; local/semilocal convergence; Kantorovich hypothesis; JCR; Scopus
    Revista / editorial: 
    Applied Mathematics and Computation
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5331
    DOI: 
    https://doi.org/10.1016/j.amc.2016.07.012
    Dirección web: 
    http://www.sciencedirect.com/science/article/pii/S0096300316304428?via%3Dihub
    Resumen:
    We present a local as well a semilocal convergence analysis for Newton's method in a Banach space setting. Using the same Lipschitz constants as in earlier studies, we extend the applicability of Newton's method as follows: local case: a larger radius is given as well as more precise error estimates on the distances involved. Semilocal case: the convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. Numerical examples further justify the theoretical results.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    26
    70
    67
    23
    38
    37
    128
    120
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields 

      Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)
      The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ...
    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis 

      Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)
      In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja