Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2017-01
dc.date.accessioned2017-08-07T14:10:12Z
dc.date.available2017-08-07T14:10:12Z
dc.identifier.issn1873-5649
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5331
dc.description.abstractWe present a local as well a semilocal convergence analysis for Newton's method in a Banach space setting. Using the same Lipschitz constants as in earlier studies, we extend the applicability of Newton's method as follows: local case: a larger radius is given as well as more precise error estimates on the distances involved. Semilocal case: the convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. Numerical examples further justify the theoretical results.es_ES
dc.language.isoenges_ES
dc.publisherApplied Mathematics and Computationes_ES
dc.relation.ispartofseries;vol. 292
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0096300316304428?via%3Dihubes_ES
dc.rightsclosedAccesses_ES
dc.subjectNewton’s methodes_ES
dc.subjectbanach spacees_ES
dc.subjectlocal/semilocal convergencees_ES
dc.subjectKantorovich hypothesises_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExtending the applicability of the local and semilocal convergence of Newton's methodes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.amc.2016.07.012


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem