• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Advancements in Soft Sensor Technologies for Quality Control in Process Manufacturing: A Review

    Autor: 
    Gallareta, José Guillermo
    ;
    González-Menorca, Carlos
    ;
    Muñoz, Pedro
    ;
    Vasic, Milica Vidak
    Fecha: 
    2025
    Palabra clave: 
    machine learning; process manufacturing; quality prediction; soft sensor
    Revista / editorial: 
    IEEE Sensors Journal
    Citación: 
    Gallareta, J. G., González-Menorca, C., Muñoz, P., & Vasic, M. V. (2025). Advancements in Soft Sensor Technologies for Quality Control in Process Manufacturing: A Review. IEEE Sensors Journal.
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/18898
    DOI: 
    https://doi.org/10.1109/JSEN.2025.3549596
    Dirección web: 
    https://ieeexplore.ieee.org/document/10931829
    Resumen:
    Recently, machine learning (ML) has become a crucial tool for enhancing process quality control in manufacturing plants. However, real-time assessments are often challenging. Soft sensors, which can predict process quality indicators using ML, have gained significant attention since 2000 because of their advantages, such as process stability, reduced product rejection, and improved energy and fuel efficiency. Oil distillation, polymers, cement, and steel were the primary industries that developed soft sensors for quality indicators. Over time, more industries have adopted these models owing to the advantages previously mentioned. ML algorithms for processing soft sensors have evolved from simple linear algorithms to complex deep learning (DL) models with neural networks, support vector machines (SVMs), and tree-based models also being widely used. This article summarizes the methodologies implemented in soft-sensor technology during this century. To this end, a comprehensive selection of articles from different processes using ML algorithms was analyzed and discussed. As data availability and computing power increase, DL algorithms will become the primary focus of soft-sensor research, which will help lower energy consumption, enhance production rates, and reduce CO2 footprints.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    4

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • I Congreso Español de Videojuegos 2022 

      González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022)
      {Resumen no disponible]
    • Assessing technological properties and environmental impact of fired bricks made by partially adding bottom ash from an industrial approach 

      Muñoz, Pedro; Letelier, Viviana; Muñoz, Luis; Gencel, Osman; Sutcu, Mucahit; Vasić, Milica Vidak (Construction and Building Materials, 2023)
      Over the past few decades, the fired clay brick industry has searched for industrial wastes to substitute raw clay deposits and lessen their impact on the environment. Despite several investigations showing positive results, ...
    • Influence of coal ashes on fired clay brick quality: Random forest regression and artificial neural networks modeling 

      Vasić, Milica Vidak; Jantunen, Heli; Mijatović, Nevenka; Nelo, Mikko; Muñoz, Pedro (Journal of Cleaner Production, 2023)
      Finding a solution to the problem of the large buildup of coal ashes is a vital necessity. Although the use of coal ashes in fired clay bricks has been thoroughly investigated, there is insufficient information on their ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja