• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Extension of Meir-Keeler-Khan (ψ− α) Type Contraction in Partial Metric Space

    Autor: 
    Sarria, Iñigo
    ;
    Singh, Dimple
    ;
    Goel, Priya
    ;
    Behl, Ramandeep
    Fecha: 
    2024
    Palabra clave: 
    metric space; fixed point; fractional differential operator; non-linear equation; order of convergence; metric space; fixed point; fractional differential operator; non-linear equation; order of convergence
    Revista / editorial: 
    Axioms
    Citación: 
    Singh, D., Goel, P., Behl, R., & Sarría, I. (2024). Extension of Meir-Keeler-Khan (ψ − α) Type Contraction in Partial Metric Space. Axioms, 13(9), 638. https://doi.org/10.3390/axioms13090638
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/18757
    DOI: 
    https://doi.org/10.3390/axioms13090638
    Dirección web: 
    https://www.mdpi.com/2075-1680/13/9/638
    Open Access
    Resumen:
    In numerous scientific and engineering domains, fractional-order derivatives and integral operators are frequently used to represent many complex phenomena. They also have numerous practical applications in the area of fixed point iteration. In this article, we introduce the notion of generalized Meir-Keeler-Khan-Rational type (ψ − α)-contraction mapping and propose fixed point results in partial metric spaces. Our proposed results extend, unify, and generalize existing findings in the literature. In regards to applicability, we provide evidence for the existence of a solution for the fractional-order differential operator. In addition, the solution of the integral equation and its uniqueness are also discussed. Finally, we conclude that our results are superior and generalized as compared to the existing ones.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: axioms-13-00638-v2.pdf
    Tamaño: 311.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    12
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    3

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Second derivative free sixth order continuation method for solving nonlinear equations with applications 

      Maroju, P; Magreñán, Á. Alberto ; Motsa, S S; Sarría, Íñigo (Journal of Mathematical Chemistry, 08/2018)
      In this paper, we deal with the study of convergence analysis of modified parameter based family of second derivative free continuation method for solving nonlinear equations. We obtain the order of convergence is at least ...
    • Highly efficient family of iterative methods for solving nonlinear models 

      Behl, Ramandeep; Sarría, Íñigo ; González-Crespo, Rubén ; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 15/01/2019)
      In this study, we present a new highly efficient sixth-order family of iterative methods for solving nonlinear equations along with convergence properties. Further, we extend this family to the multidimensional case ...
    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja