• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Second derivative free sixth order continuation method for solving nonlinear equations with applications

    Autor: 
    Maroju, P
    ;
    Magreñán, Á. Alberto (1)
    ;
    Motsa, S S
    ;
    Sarría, Íñigo (1)
    Fecha: 
    08/2018
    Palabra clave: 
    the Halley’s method; the Chebyshev’s method; multi-point methods; nonlinear equations; dynamics; Scopus; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/6655
    DOI: 
    https://doi.org/10.1007/s10910-018-0868-7
    Dirección web: 
    https://link.springer.com/article/10.1007/s10910-018-0868-7
    Resumen:
    In this paper, we deal with the study of convergence analysis of modified parameter based family of second derivative free continuation method for solving nonlinear equations. We obtain the order of convergence is at least five and especially, for parameter α=2 sixth order convergence. Some application such as Max Planck’s conservative law, multi-factor effect are discussed and demonstrate the efficiency and performance of the new method (for α=2 ). We compare the absolutely value of function at each iteration |f(xn)| and |xn−ξ| with our method and Potra and Pták method [1], Kou et al. method [2]. We observed that our method is more efficient than existing methods. Also, the Dynamics of the method are studied for a special case of the parameter in convergence.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    14
    127
    65
    32
    22
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Unified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara (1); Sarría, Íñigo (1) (Mathematics, 05/2019)
      Under the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball ...
    • Highly efficient family of iterative methods for solving nonlinear models 

      Behl, Ramandeep; Sarría, Íñigo (1); González-Crespo, Rubén (1); Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 15/01/2019)
      In this study, we present a new highly efficient sixth-order family of iterative methods for solving nonlinear equations along with convergence properties. Further, we extend this family to the multidimensional case ...
    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara (1); Sarría, Íñigo (1); Sicilia, Juan Antonio (1) (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja