• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Time series analysis for COMEX platinum spot price forecasting using SVM, MARS, MLP, VARMA and ARIMA models: A case study

    Autor: 
    Menéndez-García, Luis Alfonso
    ;
    García-Nieto, Paulino José
    ;
    García-Gonzalo, Esperanza
    ;
    Sánchez Lasheras, Fernando
    Fecha: 
    2024
    Palabra clave: 
    COMEX; SVM; MARS; ARIMA models; VARMA; MLP
    Revista / editorial: 
    Resources Policy
    Citación: 
    Menéndez-García, L. A., García-Nieto, P. J., García-Gonzalo, E., & Lasheras, F. S. (2024). Time series analysis for COMEX platinum spot price forecasting using SVM, MARS, MLP, VARMA and ARIMA models: A case study. Resources Policy, 95, 105148.
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/18091
    DOI: 
    https://doi.org/10.1016/j.resourpol.2024.105148
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S0301420724005154?via%3Dihub
    Resumen:
    This article looks at predicting the price of platinum, along with 12 other commodity prices, using both time series and machine learning models. Platinum, characterised by its rarity and significant industrial and artistic value, occupies a unique position among chemical elements. This research contributes to econometrics by showing the effectiveness of advanced modelling techniques in predicting precious metal prices, providing valuable insights for the field. Platinum prices are volatile, yet they serve as a crucial indicator of the global economy. Fluctuations in the platinum price can signal increased global growth or an impending economic downturn. The study focuses on the forecasting of platinum spot prices from the New York Commodity Exchange, using various time series machine learning models (MARS, SVM and MLP) as well as classical techniques (ARIMA and VARMA). In particular, the Artificial Neural Network (MLP) model emerges as the best performing model, with the highest predictive accuracy and a Root Mean Square Error (RMSE) of 9.24. The ARIMA time series model, on the other hand, is the worst performer with an RMSE of 74.94. The superior accuracy of the MLP method underlines its ability to identify complex relationships between platinum and other commodities. This research highlights the potential of machine learning techniques, particularly MLP, in accurately forecasting the price of platinum, with benefits for investors, industry professionals and policymakers alike.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    88
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Chrome Layer Thickness Modelling in a Hard Chromium Plating Process Using a Hybrid PSO/ RBF–SVM–Based Model 

      García Nieto, Paulino José; García-Gonzalo, Esperanza; Sánchez Lasheras, Fernando; Bernardo Sánchez, Antonio (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2020)
      The purpose of chromium plating is the creation of a hard and wear-resistant layer of chromium over a metallic surface. The principal feature of chromium plating is its endurance in the face of the wear and corrosion. This ...
    • Gold Glyconanoparticles Combined with 91–99 Peptide of the Bacterial Toxin, Listeriolysin O, Are Efficient Immunotherapies in Experimental Bladder Tumors 

      Terán-Navarro, Hector; Zeoli, Andrea; Salines-Cuevas, David; Marradi, Marco; Montoya, Noemí ; Gonzalez-Lopez, Elena; Ocejo-Vinyals, J. Gonzalo; Dominguez-Esteban, Mario; Gutierrez-Baños, Jose Luis; Campos-Juanatey, Felix; Yañez-Diaz, Sonsoles; Garcia-Castaño, Almudena; Rivera, Fernando; Duran, Ignacio; Álvarez-Domínguez, Carmen (Cancers, 2022)
      This study presents proof of concept assays to validate gold nanoparticles loaded with the bacterial peptide 91–99 of the listeriolysin O toxin (GNP-LLO91–99 nanovaccines) as immunotherapy for bladder tumors. GNP-LLO91–99 ...
    • The Impact of Dual-Career Support Systems on Perceived Barriers Among European Student-Athletes with Disabilities 

      Leiva Arcas, Alejandro; Vaquro Cristobal, Raquel; Meroño, Lourdes; Macía Andreu, María José; García - Roca, Juan Alfonso; Abenza-Cano, Lucía; Ramírez-Muñoz, Amaia; Maicas-Pérez, Luis; Isidori, Emanuele; Sánchez-Pato, Antonio (Education Sciences, 2025)
      The aim of this study was to compare the socio-demographic, sporting characteristics and perceptions of student-athletes with disabilities of perceived barriers according to the state system of dual career support. Two ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja