• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem

    Chrome Layer Thickness Modelling in a Hard Chromium Plating Process Using a Hybrid PSO/ RBF–SVM–Based Model

    Autor: 
    García Nieto, Paulino José
    ;
    García-Gonzalo, Esperanza
    ;
    Sánchez Lasheras, Fernando
    ;
    Bernardo Sánchez, Antonio
    Fecha: 
    12/2020
    Palabra clave: 
    support vector machine; particle swarm optimization; machine learning; regression; hard chromium plating process; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12815
    DOI: 
    https://doi.org/10.9781/ijimai.2020.11.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2835
    Open Access
    Resumen:
    The purpose of chromium plating is the creation of a hard and wear-resistant layer of chromium over a metallic surface. The principal feature of chromium plating is its endurance in the face of the wear and corrosion. This industrial process has a vast range of applications in many different areas. In the performance of this process, some difficulties can be found. Some of the most common are melt deposition, milky white chromium deposition, rough or sandy chromium deposition and lack of toughness of the layer or wear and lack of thickness of the layer deposited. This study builds a novel nonparametric method relied on the statistical machine learning that employs a hybrid support vector machines (SVMs) model for the hard chromium layer thickness forecast. The SVM hyperparameters optimization was made with the help of the Particle Swarm Optimizer (PSO). The outcomes indicate that PSO/SVM–based model together with radial basis function (RBF) kernel has permitted to foretell the thickness of the chromium layer created in this industrial process satisfactorily. Thus, two kinds of outcomes have been obtained: firstly, this model permits to determine the ranking of relevance of the seven independent input variables investigated in this industrial process. Finally, the high achievement and lack of complexity of the model indicate that the PSO/SVM method is very interesting compared to other conventional foretelling techniques, since a coefficient of determination of 0.9952 is acquired.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_4_4.pdf
    Tamaño: 1.062Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 4, december 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    36
    73
    163
    123
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    45
    74
    57

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Time series analysis for COMEX platinum spot price forecasting using SVM, MARS, MLP, VARMA and ARIMA models: A case study 

      Menéndez-García, Luis Alfonso; García-Nieto, Paulino José; García-Gonzalo, Esperanza; Sánchez Lasheras, Fernando (Resources Policy, 2024)
      This article looks at predicting the price of platinum, along with 12 other commodity prices, using both time series and machine learning models. Platinum, characterised by its rarity and significant industrial and artistic ...
    • Differences in Patterns of Stimulant Use and Their Impact on First-Episode Psychosis Incidence: An Analysis of the EUGEI Study 

      Rodríguez-Toscano, Elisa; Alloza, Clara; Fraguas, David; Durán-Cutilla, Manuel; Roldán, Laura; Sánchez-Gutiérrez, Teresa; López-Montoya, Gonzalo; Parellada, Mara; Moreno, Carmen; Gayer-Anderson, Charlotte; E Jongsma, Hannah; Di Forti, Marta; Quattrone, Diego; Velthorst, Eva; de Haan, Lieuwe; Selten, Jean-Paul; Szöke, Andrei; Llorca, Pierre-Michel; Tortelli, Andrea; Bobes, Julio; Bernardo, Miguel; Sanjuán, Julio; Santos, José Luis; Arrojo, Manuel; Tarricone, Ilaria; Berardi, Domenico; Ruggeri, Mirella; Lasalvia, Antonio; Ferraro, Laura; La Cascia, Caterina; La Barbera, Daniele; Rossi Menezes, Paulo; Del-Ben, Cristina Marta; EU-GEI WP2 Group; Rutten, Bart P.; van Os, Jim; Jones, Peter B.; M. Murray, Robin; B. Kirkbride, James; Morgan, Craig; Díaz-Caneja, Covadonga M.; Arango, Celso (Schizophrenia Bulletin, 2023)
      Background: Use of illegal stimulants is associated with an increased risk of psychotic disorder. However, the impact of stimulant use on odds of first-episode psychosis (FEP) remains unclear. Here, we aimed to describe ...
    • Creating a Recommender System to Support Higher Education Students in the Subject Enrollment Decision 

      Fernández-García, Antonio Jesús ; Rodríguez-Echeverría, Roberta; Preciado, Juan Carlos; Conejero Manzano, José María; Sánchez-Figueroa, Fernando (IEEE Access, 2020)
      Higher Education plays a principal role in the changing and complex world of today, and there has been rapid growth in the scientific literature dedicated to predicting students academic success or risk of dropout thanks ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja