• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Development of computational algorithmics using biochemical data to predict dietary habits: insights from the dietary deal study

    Autor: 
    Fernández-Cruz, Edwin
    ;
    Calle-Pascual, Alfonso L.
    ;
    Rubio, Miguel A.
    ;
    Matía, Pilar
    ;
    Martínez Hernández, José Alfredo
    ;
    De La O, Víctor
    ;
    Espadas, José Luis
    Fecha: 
    2024
    Palabra clave: 
    precision nutrition
    Revista / editorial: 
    Elsevier
    Citación: 
    Hernández, J. A. M., De La O, V., Fernández-Cruz, E., La Calle-Pascual, A., Rubio, M. A., Matía, P., & Espadas, J. L. (2024). Development of Computational Algorithmics Using Biochemical Data to Predict Dietary Habits: Insights From the Dietary Deal Study. Current Developments in Nutrition, 8.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/17896
    DOI: 
    10.1016/j.cdnut.2024.103285
    Dirección web: 
    https://cdn.nutrition.org/article/S2475-2991(24)01219-8/fulltext
    Open Access
    Resumen:
    Objectives: Assessing dietary intake and understanding the underlaying contributions to health is crucial from achieving metabolic wellbeing. Traditional methods to measure food intake such as food questionnaires and dietary recall have limitations in accuracy and reliability. This study aimed to develop a nutritional tool using easily available biochemical data to predict dietary habits. Methods: A total of 138 participants enrolled in the Dietary Deal cross-sectional study were assessed for diet quality using AHEI and MEDAS17 scores, categorized by median adherence (≤p50 or >p50). Adjusted logistic regressions (a-LR) identified biochemical markers associated with higher diet quality ( >p50). Model performance was evaluated using metrics: precision-recall (PR) and area under curves (AUC), sensitivity, specificity, positive (PPV) and negative predictive values (PNV). Results: Individuals in the >p50 category for both scores (AHEI and MEDAS17) consumed more pro-healthy foods and had higher values in diet-nutriscores. Two a-LR models (controlling for age, sex, BMI, physical activity, and SF-36) were developed. Probability classification in MEDAS17 >p50, associations (p-value < 0.1) were observed with glucose (OR=1.06), HDL (OR=1.04), calcium (OR=0.14), retinol (OR=0.01), ascorbate (OR=0.88), D25OH (OR=1.05), and HbA1c % (OR=0.43). Probability classification in AHEI >p50, associations (p-value < 0.1) were observed with platelet (OR=0.99), HDL (OR=0.96), copper (OR=0.98), insulin (OR=0.86), homocysteine (OR=1.33), ascorbate (OR=1.48). Both models showed moderate/high correct classification (AUC: 79% and 85%, sensitivity: 73% and 79%; specificity: 75% and 77%; PPV: 73% and 77%; PNV: 75% and 79% for MEDAS17 and AHEI, respectively). Preliminary computational algorithms were devised for probability classification based on the a-LR as a tool for nutritional practice, incorporating a weighted system to each variable. Conclusions: These findings suggest that simple biochemical data shows potential for predicting dietary habits, a steppingstone for personalized interventions in precision medicine. This study suggests some biomarkers can objectively assess food intake, paving the way for tailored personalized nutrition interventions based on individual needs.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Development of computational algorithmics using biochemical data to predict dietary habits: insights from the dietary deal study
    Tamaño: 77.72Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    203
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    39

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Translational algorithms for technological dietary quality assessment integrating nutrimetabolic data with machine learning methods 

      de la O, Victor; Fernández-Cruz, Edwin; Matía Matín, Pilar; Larrad-Sainz, Angélica; Espadas Gil, Jose Luis; Barabash, Ana; Fernández-Díaz, Cristina M.; Calle-Pascual, Alfonso L.; Rubio-Herrera, Miguel A.; Martínez, J. Alfredo (MDPI, 2024)
      Recent advances in machine learning technologies and omics methodologies are revolutionizing dietary assessment by integrating phenotypical, clinical, and metabolic biomarkers, which are crucial for personalized precision ...
    • Categorized dietotype emergence by exploratory factorial analyses with axial nutrition–health precision potential 

      Fernandez-Cruz, Edwin; de la O Pascual, Victor; Fernandez, Cristina; Calle-Pascual, Alfonso L.; Larrad, Angélica; Espadas, Jose Luis; Martinez, Jose Alfredo (MDPI, 2024)
      Introduction: Dietary habits and healthy lifestyles are crucial factors impacting cardiometabolic health and quality of life. Precision nutrition has emerged as a valuable tool to monitor the multiple factors participating ...
    • Nutritional and lifestyle features in a mediterranean cohort: an epidemiological instrument for categorizing metabotypes based on a computational algorithm 

      García-Perea, Aquilino; Tur, Josep A.; Fernández-Cruz, Edwin; González-Zorzano, Eduardo; De la O-Pascual, Víctor; Moreno-Aliaga, María J.; Martínez, J. Alfredo (MDPI, 2024)
      Background and Objectives: Modern classification and categorization of individuals’ health requires personalized variables such as nutrition, physical activity, lifestyle, and medical data through advanced analysis and ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja