• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Categorized dietotype emergence by exploratory factorial analyses with axial nutrition–health precision potential

    Autor: 
    Fernandez-Cruz, Edwin
    ;
    de la O Pascual, Victor
    ;
    Fernandez, Cristina
    ;
    Calle-Pascual, Alfonso L.
    ;
    Larrad, Angélica
    ;
    Espadas, Jose Luis
    ;
    Martinez, Jose Alfredo
    Fecha: 
    2024
    Palabra clave: 
    dietotype; precision nutrition; factorial analysis
    Revista / editorial: 
    MDPI
    Citación: 
    Fernández-Cruz, E., de la O, V., Fernández, C., Calle-Pascual, A. L., Larrad, A., Espadas, J. L., & Martínez, J. A. (2023). Categorized Dietotype Emergence by Exploratory Factorial Analyses with Axial Nutrition–Health Precision Potential. Proceedings, 91(1), 135. https://doi.org/10.3390/proceedings2023091135
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/17873
    DOI: 
    10.3390/proceedings2023091135
    Dirección web: 
    https://www.mdpi.com/2504-3900/91/1/135
    Open Access
    Resumen:
    Introduction: Dietary habits and healthy lifestyles are crucial factors impacting cardiometabolic health and quality of life. Precision nutrition has emerged as a valuable tool to monitor the multiple factors participating in metabolic wellbeing and to examine the possible interactions between diet and health. One such approach involves the use of dimensional reduction methods, which aim to classify subjects into distinct nutritional subgroups or dietotypes based on differential dietary intakes and health outcomes. Methods and Results: A multidimensional exploratory analysis using carefully collected dietary data (Validated FFQ/72 h Recall questionnaires) as well as anthropometric and biochemical determinations from the DIETARY DEAL pilot-study was conducted to define specific dietary profiles. A factorial analysis design was performed, which allowed to identify four distinct clustering factors, characterized as factor 1, or a proto-omnivorous food profile (F1p-O); factor 2, or a pro-vegetarian plant-based diet (F2p-V); factor 3, or a pro-Mediterranean pattern (F3p-M); and factor 4, or a pro-health pescatarian dietary regime (F4p-P). Statistical differences concerning food group consumption (g/d) were found. Thus, F1p-O evidenced higher consumption of fruits, fatty fish, and white and red meat; F2p-V was richer in vegetables, fruits, pulses, and whole grains; F3p-M had olive oil as the most representative food/ingredient; and F4p-P elicited consumption of healthy foods such a vegetables and fatty fish and the avoidance of refined grains, red meats, whole dairy, and ultra-processed solids. After adjusting for potential confounders and energy using the residual method, F1p-O showed a direct relationship with fat-free mass (β = +4.4; p < 0.001), and skeletal muscle mass (β = +2.6; p < 0.001), while the association with F2p-V was the opposite in such somatic markers (β = −2.3; p < 0.001; β = −3.1; p < 0.001; respectively). F3p-M was inversely linked with IL-6 and zinc (β = −0.9; p < 0.05; β = −5.3; p < 0.05, respectively), and F4p-P was coupled with selenium intake in age- and sex-adjusted models (β = +5.6; p < 0.05). Conclusions: Our findings suggest that proto-omnivorous dietary patterns are positively associated with lean mass components, while plant-based diets showed opposite trends. Mediterranean dietary patterns prompted a possible association with anti-inflammatory profiles. These results highlight the potential utility of dimensional reduction methods in understanding the occurrence of qualitative clustered dietotypes relating diet with health outcomes for prescribing precision nutrition.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Categorized Dietotype Emergence by Exploratory Factorial Analyses with Axial Nutrition–Health Precision Potential
    Tamaño: 177.2Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    50
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    4

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Translational algorithms for technological dietary quality assessment integrating nutrimetabolic data with machine learning methods 

      de la O, Victor; Fernández-Cruz, Edwin; Matía Matín, Pilar; Larrad-Sainz, Angélica; Espadas Gil, Jose Luis; Barabash, Ana; Fernández-Díaz, Cristina M.; Calle-Pascual, Alfonso L.; Rubio-Herrera, Miguel A.; Martínez, J. Alfredo (MDPI, 2024)
      Recent advances in machine learning technologies and omics methodologies are revolutionizing dietary assessment by integrating phenotypical, clinical, and metabolic biomarkers, which are crucial for personalized precision ...
    • Development of computational algorithmics using biochemical data to predict dietary habits: insights from the dietary deal study 

      Fernández-Cruz, Edwin; Calle-Pascual, Alfonso L.; Rubio, Miguel A.; Matía, Pilar; Martínez Hernández, José Alfredo; De La O, Víctor; Espadas, José Luis (Elsevier, 2024)
      Objectives: Assessing dietary intake and understanding the underlaying contributions to health is crucial from achieving metabolic wellbeing. Traditional methods to measure food intake such as food questionnaires and dietary ...
    • Nutritional and lifestyle features in a mediterranean cohort: an epidemiological instrument for categorizing metabotypes based on a computational algorithm 

      García-Perea, Aquilino; Tur, Josep A.; Fernández-Cruz, Edwin; González-Zorzano, Eduardo; De la O-Pascual, Víctor; Moreno-Aliaga, María J.; Martínez, J. Alfredo (MDPI, 2024)
      Background and Objectives: Modern classification and categorization of individuals’ health requires personalized variables such as nutrition, physical activity, lifestyle, and medical data through advanced analysis and ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja