• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Federated Learning of Explainable Artificial Intelligence (FED-XAI): A Review

    Autor: 
    López-Blanco, Raúl
    ;
    Alonso, Ricardo S.
    ;
    González-Arrieta, Angélica
    ;
    Chamoso, Pablo
    ;
    Prieto, Javier
    Fecha: 
    2023
    Palabra clave: 
    Artificial Intelligence (AI); learning; FED-XAI; Scopus
    Revista / editorial: 
    Springer Link
    Citación: 
    López-Blanco, R., Alonso, R.S., González-Arrieta, A., Chamoso, P., Prieto, J. (2023). Federated Learning of Explainable Artificial Intelligence (FED-XAI): A Review. In: Ossowski, S., Sitek, P., Analide, C., Marreiros, G., Chamoso, P., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 740. Springer, Cham. https://doi.org/10.1007/978-3-031-38333-5_32
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/16828
    DOI: 
    https://doi.org/10.1007/978-3-031-38333-5_32
    Dirección web: 
    https://link.springer.com/chapter/10.1007/978-3-031-38333-5_32#citeas
    Resumen:
    The arrival of a new wave of popularity in the field of Artificial Intelligence has again highlighted that this is a complex field, with issues to be solved and many approaches involving ethical, moral and even other issues concerning privacy, security or copyright. Some of these issues are being addressed by new approaches to Artificial Intelligence towards explainable and/or trusted AI and new distributed learning architectures such as Federated Learning. Explainable AI provides transparency and understanding in decision-making processes, which is essential to establish trust and acceptance of AI systems in different sectors. Furthermore, Federated Learning enables collaborative training of AI models without compromising data privacy, facilitating cooperation and advancement in sensitive environments. Through this study we aim to conduct a review of a new approach called FED-XAI that brings together explainable AI and Federated Learning and that has emerged as a new integrative approach to AI recently. Thanks to this review, it is concluded that the FED-XAI is a field with recent experimental results and that it is booming thanks to European projects, which are championing the use of this approach.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    83
    173
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Pollutant Time Series Analysis for Improving Air-Quality in Smart Cities 

      López-Blanco, Raúl; Chaveinte García, Miguel; Alonso, Ricardo S.; Prieto, Javier; Corchado, Juan M. (International Journal of Interactive Multimedia and Artificial Intelligence, 09/2023)
      The evolution towards Smart Cities is the process that many urban centers are following in their quest for efficiency, resource optimization and sustainable growth. This step forward in the continuous improvement of cities ...
    • Prediction of footwear demand using Prophet and SARIMA 

      Negre, Pablo; Alonso, Ricardo S.; Prieto, Javier; García, Óscar; de-la-Fuente-Valentín, Luis (Expert Systems with Applications, 2024)
      In an increasingly globalized market, where world container traffic since 2000 has almost quadrupled, the prediction of demand is an element of great importance for the optimal business development of a company. This work ...
    • I Congreso Español de Videojuegos 2022 

      González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022)
      {Resumen no disponible]

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja