Federated Learning of Explainable Artificial Intelligence (FED-XAI): A Review
Autor:
López-Blanco, Raúl
; Alonso, Ricardo S.
; González-Arrieta, Angélica
; Chamoso, Pablo
; Prieto, Javier
Fecha:
2023Palabra clave:
Revista / editorial:
Springer LinkCitación:
López-Blanco, R., Alonso, R.S., González-Arrieta, A., Chamoso, P., Prieto, J. (2023). Federated Learning of Explainable Artificial Intelligence (FED-XAI): A Review. In: Ossowski, S., Sitek, P., Analide, C., Marreiros, G., Chamoso, P., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 740. Springer, Cham. https://doi.org/10.1007/978-3-031-38333-5_32Tipo de Ítem:
conferenceObjectResumen:
The arrival of a new wave of popularity in the field of Artificial Intelligence has again highlighted that this is a complex field, with issues to be solved and many approaches involving ethical, moral and even other issues concerning privacy, security or copyright. Some of these issues are being addressed by new approaches to Artificial Intelligence towards explainable and/or trusted AI and new distributed learning architectures such as Federated Learning. Explainable AI provides transparency and understanding in decision-making processes, which is essential to establish trust and acceptance of AI systems in different sectors. Furthermore, Federated Learning enables collaborative training of AI models without compromising data privacy, facilitating cooperation and advancement in sensitive environments. Through this study we aim to conduct a review of a new approach called FED-XAI that brings together explainable AI and Federated Learning and that has emerged as a new integrative approach to AI recently. Thanks to this review, it is concluded that the FED-XAI is a field with recent experimental results and that it is booming thanks to European projects, which are championing the use of this approach.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
73 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Pollutant Time Series Analysis for Improving Air-Quality in Smart Cities
López-Blanco, Raúl; Chaveinte García, Miguel; Alonso, Ricardo S.; Prieto, Javier; Corchado, Juan M. (International Journal of Interactive Multimedia and Artificial Intelligence, 09/2023)The evolution towards Smart Cities is the process that many urban centers are following in their quest for efficiency, resource optimization and sustainable growth. This step forward in the continuous improvement of cities ... -
I Congreso Español de Videojuegos 2022
González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022){Resumen no disponible] -
Graffiti Identification System Using Low-Cost Sensors
García García, Miguel; González Arrieta, María Angélica; Rodríguez González, Sara; Márquez-Sánchez, Sergio; Da Silva Ramos, Carlos Fernando (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2024)This article introduces the possibility of studying graffiti using a colorimeter developed with Arduino hardware technology according to the Do It Yourself (DIY) philosophy. Through the obtained Red Green Blue (RGB) data ...