• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 3, september 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 3, september 2023
    • Ver ítem

    Pollutant Time Series Analysis for Improving Air-Quality in Smart Cities

    Autor: 
    López-Blanco, Raúl
    ;
    Chaveinte García, Miguel
    ;
    Alonso, Ricardo S.
    ;
    Prieto, Javier
    ;
    Corchado, Juan M.
    Fecha: 
    09/2023
    Palabra clave: 
    air pollutants; air quality; climate change; machine learning; public health; IJIMAI; Scopus
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15215
    DOI: 
    https://doi.org/10.9781/ijimai.2023.08.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3367
    Open Access
    Resumen:
    The evolution towards Smart Cities is the process that many urban centers are following in their quest for efficiency, resource optimization and sustainable growth. This step forward in the continuous improvement of cities is closely linked to the quality of life they want to offer their citizens. One of the key issues that can have the greatest impact on the quality of life of all city dwellers is the quality of the air they breathe, which can lead to illnesses caused by pollutants in the air. The application of new technologies, such as the Internet of Things, Big Data and Artificial Intelligence, makes it possible to obtain increasingly abundant and accurate data on what is happening in cities, providing more information to take informed action based on scientific data. This article studies the evolution of pollutants in the main cities of Castilla y León, using Generative Additive Models (GAM), which have proven to be the most efficient for making predictions with detailed historical data and which have very strong seasonalities. The results of this study conclude that during the COVID-19 pandemic containment period, there was an overall reduction in the concentration of pollutants.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_3_9.pdf
    Tamaño: 2.166Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 3, september 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    44
    109
    114
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    38
    65
    29

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Federated Learning of Explainable Artificial Intelligence (FED-XAI): A Review 

      López-Blanco, Raúl; Alonso, Ricardo S.; González-Arrieta, Angélica; Chamoso, Pablo; Prieto, Javier (Springer Link, 2023)
      The arrival of a new wave of popularity in the field of Artificial Intelligence has again highlighted that this is a complex field, with issues to be solved and many approaches involving ethical, moral and even other issues ...
    • Prediction of footwear demand using Prophet and SARIMA 

      Negre, Pablo; Alonso, Ricardo S.; Prieto, Javier; García, Óscar; de-la-Fuente-Valentín, Luis (Expert Systems with Applications, 2024)
      In an increasingly globalized market, where world container traffic since 2000 has almost quadrupled, the prediction of demand is an element of great importance for the optimal business development of a company. This work ...
    • Expanding the clinical and genetic spectrum of SQSTM1-related disorders in family with personality disorder and frontotemporal dementia 

      Llamas-Velasco, Sara; Arteche-López, Ana; Méndez-Guerrero, Antonio; Puertas-Martín, Verónica ; Quesada Espinosa, Juan Francisco; Lezana Rosales, Jose Miguel; González-Sánchez, Miguel; Blanco-Palmero, Victor Antonio; Palma Milla, Carmen; Herrero-San Martín, Alejandro; Borrego-Hernández, Daniel; García-Redondo, Alberto; Pérez-Martínez, David Andrés; Villarejo-Galende, Alberto (Taylor and Francis Ltd., 2021)
      Objective:SQSTM1-variants associated with frontotemporal lobar degeneration have been described recently. In this study, we investigated a heterozygous in-frame duplication c.436_462dup p. (Pro146_Cys154dup) in the SQSTM1 ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja