Mostrar el registro sencillo del ítem

dc.contributor.authorLópez-Blanco, Raúl
dc.contributor.authorAlonso, Ricardo S.
dc.contributor.authorGonzález-Arrieta, Angélica
dc.contributor.authorChamoso, Pabloes_ES
dc.contributor.authorPrieto, Javieres_ES
dc.date2023
dc.date.accessioned2024-06-28T09:43:30Z
dc.date.available2024-06-28T09:43:30Z
dc.identifier.citationLópez-Blanco, R., Alonso, R.S., González-Arrieta, A., Chamoso, P., Prieto, J. (2023). Federated Learning of Explainable Artificial Intelligence (FED-XAI): A Review. In: Ossowski, S., Sitek, P., Analide, C., Marreiros, G., Chamoso, P., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 740. Springer, Cham. https://doi.org/10.1007/978-3-031-38333-5_32es_ES
dc.identifier.isbn978-3-031-38332-8
dc.identifier.isbn978-3-031-38333-5
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16828
dc.description.abstractThe arrival of a new wave of popularity in the field of Artificial Intelligence has again highlighted that this is a complex field, with issues to be solved and many approaches involving ethical, moral and even other issues concerning privacy, security or copyright. Some of these issues are being addressed by new approaches to Artificial Intelligence towards explainable and/or trusted AI and new distributed learning architectures such as Federated Learning. Explainable AI provides transparency and understanding in decision-making processes, which is essential to establish trust and acceptance of AI systems in different sectors. Furthermore, Federated Learning enables collaborative training of AI models without compromising data privacy, facilitating cooperation and advancement in sensitive environments. Through this study we aim to conduct a review of a new approach called FED-XAI that brings together explainable AI and Federated Learning and that has emerged as a new integrative approach to AI recently. Thanks to this review, it is concluded that the FED-XAI is a field with recent experimental results and that it is booming thanks to European projects, which are championing the use of this approach.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Linkes_ES
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-031-38333-5_32#citeases_ES
dc.rightsrestrictedAccesses_ES
dc.subjectArtificial Intelligence (AI)es_ES
dc.subjectlearninges_ES
dc.subjectFED-XAIes_ES
dc.subjectScopuses_ES
dc.titleFederated Learning of Explainable Artificial Intelligence (FED-XAI): A Reviewes_ES
dc.typeconferenceObjectes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-031-38333-5_32


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem