• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Forecasting business software piracy rates A machine-learning approach

    Autor: 
    Rodríguez Andrés, Antonio
    ;
    Kaur, Harleen
    Fecha: 
    2020
    Palabra clave: 
    machine-learning algorithms; business software piracy rates; vector regression model; WOS(2)
    Revista / editorial: 
    Routledge
    Citación: 
    Andrés, A. R., & Kaur, H. (2020). Forecasting business software piracy rates: A machine-learning approach. In Society and Technology (pp. 79-94). Routledge.
    Tipo de Ítem: 
    bookPart
    URI: 
    https://reunir.unir.net/handle/123456789/16734
    Dirección web: 
    https://www.taylorfrancis.com/chapters/edit/10.4324/9780429278945-6/forecasting-business-software-piracy-rates-antonio-rodr%C3%ADguez-andr%C3%A9s-harleen-kaur
    Resumen:
    The aim of this research is to examine how effective and accurate machine-learning algorithms can be in predicting business software piracy rates. Computer software is mainly protected by copyright law. Cross-national data on software piracy rates are extracted from the Business Software Alliance (BSA). For that purpose, we employ a sample of 96 countries over the period 2000–2014. We implement the linear regression, and support vector regression models for a wide set of features. The choice of features (or explanatory variables) is based on previous empirical literature on business software piracy. In particular, we conduct a comparison performance of both machine-learning algorithms. Our results show that the support vector regression model has the lowest error rate in comparison to the linear regression model. Future research implications are also discussed.
    Descripción: 
    Es un capítulo del libro: Lechman, E. & Popowska, M. (2020). Society and Technology Opportunities and Challenges (1st ed.). Routledge
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    51
    56
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Sex-Specific Impact of Changes in job Status on Suicidal Ideation 

      Kim, Dae-Hwan; Rodríguez Andrés, Antonio ; Leigh, J. Paul (CRISIS-The Journal of Crisis Intervention and Suicide Prevention, 03/2020)
      Background: Around the globe, 800,000 people die from suicide every year. Despite being one of the leading causes of death, suicide remains a low public health priority. Korea has the second highest total suicide rate among ...
    • Distressed in the queue? Psychophysiological and behavioral evidence for two alternative car-following techniques 

      Lucas-Alba, Antonio; Melchor, Óscar M.; Fernández-Martín, Andrés ; Blanch-Micó, María Teresa; Lombas, Andrés S. (Transportation Research Part F: Traffic Psychology and Behaviour, 10/2020)
      Background: Nature offers numerous examples of animal species exhibiting harmonious collective movement. Unfortunately, the motorized Homo sapiens sapiens is not included and pays a price for it. Too often, drivers who ...
    • Expanding the clinical and genetic spectrum of SQSTM1-related disorders in family with personality disorder and frontotemporal dementia 

      Llamas-Velasco, Sara; Arteche-López, Ana; Méndez-Guerrero, Antonio; Puertas-Martín, Verónica ; Quesada Espinosa, Juan Francisco; Lezana Rosales, Jose Miguel; González-Sánchez, Miguel; Blanco-Palmero, Victor Antonio; Palma Milla, Carmen; Herrero-San Martín, Alejandro; Borrego-Hernández, Daniel; García-Redondo, Alberto; Pérez-Martínez, David Andrés; Villarejo-Galende, Alberto (Taylor and Francis Ltd., 2021)
      Objective:SQSTM1-variants associated with frontotemporal lobar degeneration have been described recently. In this study, we investigated a heterozygous in-frame duplication c.436_462dup p. (Pro146_Cys154dup) in the SQSTM1 ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja