Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Andrés, Antonio
dc.contributor.authorKaur, Harleen
dc.date2020
dc.date.accessioned2024-06-12T12:28:43Z
dc.date.available2024-06-12T12:28:43Z
dc.identifier.citationAndrés, A. R., & Kaur, H. (2020). Forecasting business software piracy rates: A machine-learning approach. In Society and Technology (pp. 79-94). Routledge.es_ES
dc.identifier.isbn9780429278945
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16734
dc.descriptionEs un capítulo del libro: Lechman, E. & Popowska, M. (2020). Society and Technology Opportunities and Challenges (1st ed.). Routledgees_ES
dc.description.abstractThe aim of this research is to examine how effective and accurate machine-learning algorithms can be in predicting business software piracy rates. Computer software is mainly protected by copyright law. Cross-national data on software piracy rates are extracted from the Business Software Alliance (BSA). For that purpose, we employ a sample of 96 countries over the period 2000–2014. We implement the linear regression, and support vector regression models for a wide set of features. The choice of features (or explanatory variables) is based on previous empirical literature on business software piracy. In particular, we conduct a comparison performance of both machine-learning algorithms. Our results show that the support vector regression model has the lowest error rate in comparison to the linear regression model. Future research implications are also discussed.es_ES
dc.language.isoen_USes_ES
dc.publisherRoutledgees_ES
dc.relation.urihttps://www.taylorfrancis.com/chapters/edit/10.4324/9780429278945-6/forecasting-business-software-piracy-rates-antonio-rodr%C3%ADguez-andr%C3%A9s-harleen-kaures_ES
dc.rightsrestrictedAccesses_ES
dc.subjectmachine-learning algorithmses_ES
dc.subjectbusiness software piracy rateses_ES
dc.subjectvector regression modeles_ES
dc.subjectWOS(2)es_ES
dc.titleForecasting business software piracy rates A machine-learning approaches_ES
dc.typebookPartes_ES
reunir.tag~ARIes_ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem