Mostrar el registro sencillo del ítem
Forecasting business software piracy rates A machine-learning approach
dc.contributor.author | Rodríguez Andrés, Antonio | |
dc.contributor.author | Kaur, Harleen | |
dc.date | 2020 | |
dc.date.accessioned | 2024-06-12T12:28:43Z | |
dc.date.available | 2024-06-12T12:28:43Z | |
dc.identifier.citation | Andrés, A. R., & Kaur, H. (2020). Forecasting business software piracy rates: A machine-learning approach. In Society and Technology (pp. 79-94). Routledge. | es_ES |
dc.identifier.isbn | 9780429278945 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/16734 | |
dc.description | Es un capítulo del libro: Lechman, E. & Popowska, M. (2020). Society and Technology Opportunities and Challenges (1st ed.). Routledge | es_ES |
dc.description.abstract | The aim of this research is to examine how effective and accurate machine-learning algorithms can be in predicting business software piracy rates. Computer software is mainly protected by copyright law. Cross-national data on software piracy rates are extracted from the Business Software Alliance (BSA). For that purpose, we employ a sample of 96 countries over the period 2000–2014. We implement the linear regression, and support vector regression models for a wide set of features. The choice of features (or explanatory variables) is based on previous empirical literature on business software piracy. In particular, we conduct a comparison performance of both machine-learning algorithms. Our results show that the support vector regression model has the lowest error rate in comparison to the linear regression model. Future research implications are also discussed. | es_ES |
dc.language.iso | en_US | es_ES |
dc.publisher | Routledge | es_ES |
dc.relation.uri | https://www.taylorfrancis.com/chapters/edit/10.4324/9780429278945-6/forecasting-business-software-piracy-rates-antonio-rodr%C3%ADguez-andr%C3%A9s-harleen-kaur | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | machine-learning algorithms | es_ES |
dc.subject | business software piracy rates | es_ES |
dc.subject | vector regression model | es_ES |
dc.subject | WOS(2) | es_ES |
dc.title | Forecasting business software piracy rates A machine-learning approach | es_ES |
dc.type | bookPart | es_ES |
reunir.tag | ~ARI | es_ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |