• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Clustering of LMS Use Strategies with Autoencoders

    Autor: 
    Verdú, María J
    ;
    Regueras, Luisa M.
    ;
    de Castro, Juan-Pablo
    ;
    Verdú, Elena
    Fecha: 
    2023
    Palabra clave: 
    autoencoders; clustering; deep learning; educational data mining; learning management system; unsupervised learning; JCR; Scopus
    Revista / editorial: 
    Applied Sciences (Switzerland)
    Citación: 
    Verdú, M. J., Regueras, L. M., de Castro, J. P., & Verdú, E. (2023). Clustering of LMS Use Strategies with Autoencoders. Applied Sciences, 13(12), 7334. MDPI AG. Retrieved from http://dx.doi.org/10.3390/app13127334
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15666
    DOI: 
    https://doi.org/10.3390/app13127334
    Dirección web: 
    https://www.mdpi.com/2076-3417/13/12/7334
    Open Access
    Resumen:
    Learning Management Systems provide teachers with many functionalities to offer materials to students, interact with them and manage their courses. Recognizing teachers’ instructing styles from their course designs would allow recommendations and best practices to be made. We propose a method that determines teaching style in an unsupervised way from the course structure and use patterns. We define a course classification approach based on deep learning and clustering. We first use an autoencoder to reduce the dimensionality of the input data, while extracting the most important characteristics; thus, we obtain a latent representation of the courses. We then apply clustering techniques to the latent data to group courses based on their use patterns. The results show that this technique improves the clustering performance while avoiding the manual data pre-processing work. Furthermore, the obtained model defines seven course typologies that are clearly related to different use patterns of Learning Management Systems.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Clustering_of_LMS_Use_Strategies_with_Autoencoders.pdf
    Tamaño: 2.379Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    10
    109
    51
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5
    26
    5

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Learning Pathway Recommendation based on a Pedagogical Ontology and its Implementation in Moodle 

      Henning, Peter A; Forstner, Alexandra; Heberle, Florian; Swertz, Christian; Schmölz, Alexander; Barberi, Alessandro; Verdú, Elena; Regueras, Luisa M.; Verdú, María J; de Castro, Juan-Pablo; Burgos, Daniel; De la Fuente-Valentin, Luis; Gal, Eran; Parodi, Elisabetta; Schwertel, Uta; Steudter, Sven (Lecture Notes in Informatics, 2014)
      When learners may select among different alternatives, or are guided to do so by an adaptive learning environment (ALE), it is generally meaningful to discuss the concept of different learning pathways. Pedagogically, these ...
    • Clustering analysis for automatic certification of LMS strategies in a university virtual campus 

      Regueras, Luisa M; Verdú, María J; Castro, Juan P de; Verdú, Elena (IEEE Access, 2019)
      In recent years, the use of Learning Management Systems (LMS) has grown considerably. This has had a strong effect on the learning process, particularly in higher education. Most universities incorporate LMS as a complement ...
    • Integration of an intelligent tutoring system in a course of computer network design 

      Verdú, Elena ; Regueras, Luisa M; Gal, Eran; Castro, Juan P de; Verdú, María J; Kohen-Vacs, Dan (Educational Technology Research and Development, 06/2017)
      INTUITEL is a research project aiming to offer a personalized learning environment. The INTUITEL approach includes an Intelligent Tutoring System that gives students recommendations and feedback about what the best learning ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja