Mostrar el registro sencillo del ítem

dc.contributor.authorKumar Sharma, Krishna
dc.contributor.authorSeal, Ayan
dc.contributor.authorYazidi, Anis
dc.contributor.authorKrejcar, Ondrej
dc.date2023-12
dc.date.accessioned2023-11-02T17:22:50Z
dc.date.available2023-11-02T17:22:50Z
dc.identifier.citationK. K. Sharma, A. Seal, A. Yazidi, O. Krejcar. S-Divergence-Based Internal Clustering Validation Index, International Journal of Interactive Multimedia and Artificial Intelligence, (2023), http://dx.doi.org/10.9781/ijimai.2023.10.001es_ES
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15533
dc.description.abstractA clustering validation index (CVI) is employed to evaluate an algorithm’s clustering results. Generally, CVI statistics can be split into three classes, namely internal, external, and relative cluster validations. Most of the existing internal CVIs were designed based on compactness (CM) and separation (SM). The distance between cluster centers is calculated by SM, whereas the CM measures the variance of the cluster. However, the SM between groups is not always captured accurately in highly overlapping classes. In this article, we devise a novel internal CVI that can be regarded as a complementary measure to the landscape of available internal CVIs. Initially, a database’s clusters are modeled as a non-parametric density function estimated using kernel density estimation. Then the S-divergence (SD) and S-distance are introduced for measuring the SM and the CM, respectively. The SD is defined based on the concept of Hermitian positive definite matrices applied to density functions. The proposed internal CVI (PM) is the ratio of CM to SM. The PM outperforms the legacy measures presented in the literature on both superficial and realistic databases in various scenarios, according to empirical results from four popular clustering algorithms, including fuzzy k-means, spectral clustering, density peak clustering, and density-based spatial clustering applied to noisy data.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligencees_ES
dc.relation.ispartofseries;vol. 8, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3381es_ES
dc.rightsopenAccesses_ES
dc.subjectclustering quality indexeses_ES
dc.subjectgeneralized meanes_ES
dc.subjectK-Nearest Neighborses_ES
dc.subjectS-distancees_ES
dc.subjectS-divergencees_ES
dc.subjectspectral clusteringes_ES
dc.subjectsymmetry favoredes_ES
dc.subjectIJIMAIes_ES
dc.titleS-Divergence-Based Internal Clustering Validation Indexes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2023.10.001


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem