• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem

    S-Divergence-Based Internal Clustering Validation Index

    Autor: 
    Kumar Sharma, Krishna
    ;
    Seal, Ayan
    ;
    Yazidi, Anis
    ;
    Krejcar, Ondrej
    Fecha: 
    12/2023
    Palabra clave: 
    clustering quality indexes; generalized mean; K-Nearest Neighbors; S-distance; S-divergence; spectral clustering; symmetry favored; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Citación: 
    K. K. Sharma, A. Seal, A. Yazidi, O. Krejcar. S-Divergence-Based Internal Clustering Validation Index, International Journal of Interactive Multimedia and Artificial Intelligence, (2023), http://dx.doi.org/10.9781/ijimai.2023.10.001
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15533
    DOI: 
    https://doi.org/10.9781/ijimai.2023.10.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3381
    Open Access
    Resumen:
    A clustering validation index (CVI) is employed to evaluate an algorithm’s clustering results. Generally, CVI statistics can be split into three classes, namely internal, external, and relative cluster validations. Most of the existing internal CVIs were designed based on compactness (CM) and separation (SM). The distance between cluster centers is calculated by SM, whereas the CM measures the variance of the cluster. However, the SM between groups is not always captured accurately in highly overlapping classes. In this article, we devise a novel internal CVI that can be regarded as a complementary measure to the landscape of available internal CVIs. Initially, a database’s clusters are modeled as a non-parametric density function estimated using kernel density estimation. Then the S-divergence (SD) and S-distance are introduced for measuring the SM and the CM, respectively. The SD is defined based on the concept of Hermitian positive definite matrices applied to density functions. The proposed internal CVI (PM) is the ratio of CM to SM. The PM outperforms the legacy measures presented in the literature on both superficial and realistic databases in various scenarios, according to empirical results from four popular clustering algorithms, including fuzzy k-means, spectral clustering, density peak clustering, and density-based spatial clustering applied to noisy data.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_4_12.pdf
    Tamaño: 4.059Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 4, december 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    41
    124
    127
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    30
    41
    44

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Performance and Convergence Analysis of Modified C-Means Using Jeffreys-Divergence for Clustering 

      Seal, Ayan; Karlekar, Aditya; Krejcar, Ondrej; Herrera-Viedma, Enrique (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      The size of data that we generate every day across the globe is undoubtedly astonishing due to the growth of the Internet of Things. So, it is a common practice to unravel important hidden facts and understand the massive ...
    • Imputation of Rainfall Data Using the Sine Cosine Function Fitting Neural Network 

      Chan Chiu, Po; Selamat, Ali; Krejcar, Ondrej; Kuok Kuok, King; Herrera-Viedma, Enrique; Fenza, Giuseppe (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility ...
    • Enhancing big data feature selection using a hybrid correlation-based feature selection 

      Mohamad, Masurah; Selamat, Ali; Krejcar, Ondrej; González-Crespo, Rubén ; Herrera-Viedma, Enrique; Fujita, Hamido (2021)
      This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja