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Abstract

A clustering validation index (CVI) is employed to evaluate an algorithm’s clustering results. Generally, CVI 
statistics can be split into three classes, namely internal, external, and relative cluster validations. Most of the 
existing internal CVIs were designed based on compactness (CM) and separation (SM). The distance between 
cluster centers is calculated by SM, whereas the CM measures the variance of the cluster. However, the SM 
between groups is not always captured accurately in highly overlapping classes. In this article, we devise a 
novel internal CVI that can be regarded as a complementary measure to the landscape of available internal 
CVIs. Initially, a database’s clusters are modeled as a non-parametric density function estimated using kernel 
density estimation. Then the S-divergence (SD) and S-distance are introduced for measuring the SM and the 
CM, respectively. The SD is defined based on the concept of Hermitian positive definite matrices applied to 
density functions. The proposed internal CVI (PM) is the ratio of CM to SM. The PM outperforms the legacy 
measures presented in the literature on both superficial and realistic databases in various scenarios, according 
to empirical results from four popular clustering algorithms, including fuzzy k-means, spectral clustering, 
density peak clustering, and density-based spatial clustering applied to noisy data.
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I. Introduction

Clustering is an unsupervised methodology for analyzing a set of 
data objects by dividing them into subsets such that each group 

contains similar objects while dissimilar ones end up in different 
groups [1]–[5]. Thus, the objective of clustering is to mine the data to 
explore multi-dimensional obscure patterns and hidden structures in 
the data. Nowadays, clustering has received a great deal of attention 
among the community of researchers in the area of pattern recognition 
by the virtue of remarkable academic and commercial applications 
spanning over a wide range which includes identifying fake news 
[6], spam filtering [7], market segmentation [8], [9], classifying 
network traffic [10], detecting fraudulent or criminal activity [11], 
[12], cybersecurity [13], document analysis [14], drug discovery [15], 
information retrieval [16], and many more [17]–[22].

A fundamental question in clustering is how to assess the 
“goodness” of the resulting clusters. The answer to this question is not 
obvious as it is difficult to devise criteria that determine the optimal 
partitioning of the data objects into clusters. Obtaining insights about 
the goodness of clusters using some visualization tools is not a feasible 
solution when the number of dimensions increases, as human eyes 
are not accustomed to higher-dimensional spaces. The process of 
assessing the performance of the clustering algorithm is referred to 
as cluster validation. According to the clustering validation procedure, 
the outcome of the clustering phase is validated quantitatively 
by a Clustering Validation Index (CVI). A CVI can be considered a 
function that, for a given clustering scheme and database, produces 
some value that represents the quality of the clustering scheme [23], 
[24]. In other words, a CVI provides some insight into the quality of 
grouping. Internal, external, and relative are the three main categories 
of CVIs. Internal CVIs rely only on the internal information of a given 
database. Unlike internal CVIs, external CVIs assess the “goodness” of 
a clustering structure based on provided class labels as external inputs 
[25]–[28]. On the other hand, relative CVIs evaluate the clustering 
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results by changing the number of clusters. We mainly concentrate 
on internal CVIs in this work. The most intuitive notions for defining 
“good clustering” are cohesion/compactness (CM) and separation 
(SM). In simple words, when data objects in a cluster are in the vicinity 
of each other, the cluster is called a compact cluster. On the other hand, 
when neighboring clusters are possibly quite far from each other, then 
these clusters are easily identifiable and well separated. In other words, 
SM measures the distance between the centers of two clusters, whereas 
CM measures the variance within a cluster. Generally, geometric 
distance is used to compute SM. However, geometric distance can not 
always represent the SM efficiently, especially when two clusters are 
highly overlapping. Let us consider an example where three clusters, 
namely Cm, Cn, and Cp, are well separated (see Fig. 1(a)). As clusters 
are well separated, geometric distance can efficiently capture the 
dissimilarity between clusters. We may assume another scenario (see 
Fig. 1(b)), where clusters Cm, Cn, and Cp, are overlapping. In this case, 
the geometric distance between the centers of Cm and Cn is the same 
as the geometric distance between the centers of Cm and Cp. Thus, the 
dissimilarity between clusters can not be captured accurately using 
geometric distance. In [29], Cui et al. assumed that the data of a cluster 
were obtained from multivariate Gaussian distributions, and Jeffrey 
divergence (JD) was considered, as a distance measure for computing 
SM between clusters. The JD is not a valid distance measure because 
it does not abide by the metric property of triangle inequality [30]. 
In addition, the JD is not appropriate, while clusters are almost 
identical. Alternatively stated, a small change in clusters cannot be 
captured by JD. It encourages us to delve further in this direction by 
proposing an internal CVI based on the notion of S-divergence (SD), 
which can catch tiny variations in clusters since the cone is formed 
by the Hermitian positive definite matrices (HPDM). In addition, it 
fulfills all the properties of the distance metric [31]. Four well-known 
clustering techniques are employed to evaluate the performance of 
the proposed CVI on ten real-world and artificial databases. However, 
each cluster is modeled as a random variable using a non-parametric 
probability density function named kernel density estimation (KDE) 

before the use of the proposed internal CVI. Among ten databases, 
some are well separated, a few are slightly overlapping, and the rest 
are highly overlapping. Moreover, noise is added in some databases to 
validate the efficacy of the proposed CVI. A comparative analysis is 
also performed to show the competitiveness of the proposed internal 
CVI in comparison with other CVIs.

The remaining article is structured as follows. After the 
introduction, in Section II, we examine several well-known internal 
CVIs. The proposed internal CVI is discussed further in Section III. 
Section IV provides the results of the experiments. At last, Section V 
concludes the work. 

II. Related Works

A summary of some of the most popular internal CVIs is presented 
in this section. The CM reflects the average closeness or similarity 
of data points in all clusters. A value approaching 0 indicates good 
clustering [32]. The SM portrays the degree of separation between 
clusters [32]. A higher value of SM signifies better clustering. It is 
worth mentioning that other indexes, for example, root mean square 
standard deviation index (RMSSTDI) [33], root squared index (RSI) 
[33], and modified Hubert validity index (MHI) [34] perform on a 
different principle. Indeed, the RMSSTDI quantifies the homogeneity 
of the resultant clusters by calculating the square root of the aggregated 
variance of all the data objects. RSI determines the magnitude of 
difference between clusters using the ratio of the addition of the 
squares between-clusters to the total summation of the squares in the 
database. RMSSTDI, RSI, and MHI evaluate the difference between-
clusters by calculating the disagreements of groups of data objects in 
two parts. Furthermore, these indexes do not consider both CM and 
SM to validate the formed clusters. The Calinski-Harabasz index (CHI) 
computes the ratio of the sum of the average of between-clusters 
and of intra-cluster dispersion for all clusters [35]. A greater value 
of CHI demonstrates better partitions. CHI is usually fast to compute. 
Moreover, it is suitable for convex and well-separated clusters. On 
the other hand, it produces a low value for non-convex clusters. The 
Dunn validity index (DVI) calculates the SM of clusters over the CM of 
clusters [36]. Thus, a larger value of DVI suggests well-separated and 
compact clusters. However, the complexity of the DVI increases with 
the increase in the number of clusters, k. The Davies-Bouldin index 
(DBI) computes cluster overlapping using the ratio of the sum of intra-
cluster spread to between-cluster distance [37]. A value adjacent to 
0 illustrates better partitions. It computes the inherent attributes and 
quantities of a database. Moreover, it is limited to Euclidean space. The 
JD-based validity index (JI) is a ratio of CM to JD-based SM, [38]. JD 
determines the similarity between two probability distributions and 
is suitable for slightly-overlapping clusters. Thus, a value close to 0 is 
a sign of better partitions. However, JD falls short when the clusters 
are highly overlapping. The silhouette index (SI) measures how alike 
a data object is to its own cluster/cohesion/CM against other clusters/
SM [39]. A value near 1 signifies that the data object is well-suited 
to its cluster and does not match enough to neighboring clusters. A 
clustering configuration is appropriate when most data objects have a 
high value. SI is higher for well-separated and dense clusters. However, 
it is not suitable for non-convex clusters. Moreover, the computational 
complexity, O(n2d log(n)), is high. I validity index (IVI) computes the 
CM and the SM using the maximum distance among data objects and 
centers of clusters [40]. Furthermore, the optimal number of clusters 
is calculated by maximizing the value of IVI. The Xie-Beni index (XBI) 
is defined using CM as the mean square distance among data objects 
and their cluster centers and the SM as the minimum square distance 
between the centers of clusters [41]. Optimal clusters exhibit a 
minimum value of XBI. The value of XBI reduces monotonically as the 
value of k increases. Furthermore, Bouguessa et al. [42] and Arbelaitz 

Cm-cluster Cn-cluster Cp-cluster

Cm-cluster Cn-cluster Cp-cluster

(a) An instance of well separated clusters

(b) An instance of overlapped clusters

Fig. 1. Distribution of three clusters.
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et al. [43] also worked to introduce indices based on Dunn variations 
and cohesion, which act well with noisy and overlapped clusters. 
Table I reports the definition, range, optimum value, and complexity 
of each of the above-discussed internal CVIs.

III. Proposed CVI

In this section, we examine and present some of the imperative 
properties of SD and propose a new internal CVI measure.

A. S-Divergence and Its Properties
Definition 1. SD presents a metric on the set of matrices Aτ of size τ × 
τ [31]. The set Aτ is a convex cone, on which SD is defined using Eq. 1.

 (1)

where det(.) denotes the determinant operation. DS is a metric 
on the positive definite matrices (PDM) Aτ. Let ϕτ be a one-to-one 
function from . Now examine a vector  
to generate PDM from a vector t. SD is a divergence function on 
the cone of HPDM. A convex cone structure on the set of HPDM 
enables “geometric optimization”, which enables us to resolve certain 
problems that may be non-convex in Euclidean space but convex in 
manifold space, or, offers efficient optimization. Thus, the divergence 
function on the cone of hpd matrices has empirical and computational 
advantages in many applications [44].

At this juncture, we shall demonstrate that the SD meets all the 
necessary characteristics for becoming a distance metric, which are 
given below:

Proposition 1. Non-negativity : 
Proof. The modified version of Eq. 1 is given below:

 (2)

 (3)

where  because determinant of the PDM is always 
positive and numerator will be greater thanequal to denominator. 

□

Proposition 2. Equality : 
Proof. From proposition 1, we can write

TABLE I. A Review of Some of the Popular Internal CVIs

S. No. Internal CVI Notation Expression Range Optimal value Complexity

1
Root mean square standard 
deviation index

RMSSTDI [0, +∞] elbow O (nd)

2 Root squared index RSI [0, 1] elbow O (nd)

3
Modified Hubert validity 
index

MHI [0, +∞] elbow O (n2d)

4 Compactness measure CM [0, +∞] Min O (nd)

5 Separation measure SM [0, +∞] Max O (k2d)

6 Calinski-Harabasz index CHI [0, +∞] Max O (nd)

7 Dunn validity index DVI [0, +∞] Max O (n2d log(n))

8 Davies-Bouldin index DBI [0, +∞] Min O (n2d log(n))

9
Jeffrey-divergence based 
validity index

JI [0, +∞] Min O (nd)

10 Silhouette index SI [-1, 1] Max O (n2d log(n))

11 I validity index IVI [0, +∞] Max O (n2d log(n))

12 Xie-Beni index XBI [0, +∞] Min O (n2d log(n))

DB: Dataset, n: number of data objects in DB, v : center of DB, d: number of attributes, c: data objects of DB, k: number of clusters, Ci: i
th cluster, cj

 : jth member 
of ith cluster, vi: center of ith cluster, var(Ci): variance vector of Ci, dist ( ): distance function.
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Now, if t and u are equal then u can be replaced by t in the above 
expression and the modified expression is

Please note that we used the property that the determinant of the 
power of a matrix is equal to the determinant raised to that power, 
meaning in our case:

□

Proposition 3. Symmetry :

Proof. The SD amid t and u is denoted as follows:

 [as already noted in proposition 
1] = 

It implies SD also abides the symmetric metric property.

□

Proposition 4. Triangle Inequality: Suppose t, u, and z be three vectors. 
Then this proposition states, the sum of the lengths of any two sides viz., 
DS (ϕτ (t), ϕτ (u)) and DS (ϕτ (u), ϕτ (z)) of a triangle is greater than or 
equal to the length of the third side DS (ϕτ (t), ϕτ (z)). Arithmetically,  
DS (ϕτ (t), ϕτ (z)) ≤ DS (ϕτ (t), ϕτ (u)) + DS (ϕτ (u), ϕτ (z)).

Proof. Let t, u, and z be three vectors. Then ϕτ (t), ϕτ (u), ϕτ (z) > 0 and 
diagonal matrices.

Thus ,

, and

□

Hence, it is showed that the SD is a metric.

B. Cluster Density Estimation
In this study, each cluster is modeled using a random variable 

characterized by a probability distribution. In practice, the underlying 
probability distribution of a random variable is not known in advance. 
Alternatively, the probability distribution of a random variable is 
estimated from the data objects or samples of a cluster. Therefore, each 
random variable is associated with a set of samples. We assume that 
samples are finite, independent, and identically distributed. Here, we 
adopt the well-known non-parametric probability estimation technique 
KDE to estimate the underlying distribution of the observations.

Let M be a random variable characterizing cluster Cm, where each 
sample, x, is of d−dimensions. Then, the kernel function is obtained by 
multiplying the d number of Gaussian functions with bandwidth,  , 
where 1 ≤ l ≤ d and d ≥ 2. Equation 4 is applied to estimate M [1], [2].

 (4)

where x ∈ 𝒟, every cluster is defined in the same domain 𝒟 and 
we also assume that the 𝒟 is a bounded range of values and cj is a jth 
member of ith cluster or cj ∈ Ci.  is the bandwidth of the lth feature 
and it controls the smoothing of the Gaussian kernel function. The 
Sliverman approximation rule (Eq. 5) is considered to estimate .

 (5)

where σl denotes the standard deviation of Cm for the lth feature.

C. S-Divergence Between Two Clusters
The SD between two clusters is stated as follows:

Definition 2. Let Cm and Cn be two clusters. The M and N are the two 
probability mass functions (PMFs) of Cm and Cn respectively as defined 
in Eq. 4 with finite or countably infinite values in a discrete domain, 𝒟. 
The SD between Cm and Cn is computed by Eq. 6.

 (6)

where we assume that M has Cm samples M = {𝑥1, 𝑥2, ..., 𝑥|Cm|} and 
PMF of every uncertain object is converted into diagonal matrix using 
ϕ|Cm|( ) function as follows: 

ϕ|Cm|(M) = 

and ϕ|Cm|(N) =  . 

Sometimes, it is needed to smooth a PMF of a data object thus the 
probability values become non-negative in a domain since SD consists 
of a logarithmic function as shown in Eq. 6. Thus, Eq. 7 is employed 
for normalizing [1].

 (7)

where β is a constant and the value of β lies between an interval [0, 
1]. The |𝒟| signifies the number of possible values in 𝒟. Furthermore, 
the sum of integral of N'(𝑥) over the entire 𝒟 is 1. Equation 8 is utilized 
to estimate error in smoothing.

 (8)

The value of β is assigned to 0.001 in this work. The ϕ|Cm| function 
is used to convert probability distributions to HPDM. The HPDM 
are manifolds, which are similar to non-positive curvature [31]. The 
HPDM cone does not come with a natural similarity function for a 
data object, although, it has computational and empirical advantages. 
Now, Eq. 6 is further simplified as follows:

Finally, the SD between M and N is expressed as follows:
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D. The Proposed Internal CVI
The proposed internal CVI (PM) is based on CM and SM. So, the 

values of CM and SM need to be computed before calculating PM. The 
CM indicates the closeness or similarity of data objects in a cluster. 
Moreover, it is an average CM of all k clusters. The CM of every 
cluster, Ci, is calculated by Eq. 9. It is an average of aggregated squared 
S-distance (SD) of a cluster data object cj to its center vi.

 (9)

where DSD is the SD, which can be defined mathematically using 
Eq. 10.

Definition 3. define DSD:  as

 (10)

Equation 10 shows a point-to-point distance measure labeled as 
the SD that is motivated by the SD. It is defined in the open cone of 
PDM. Moreover, Eq. 10 shows that if two data objects with the same 
Euclidean distance are close to the origin, then data objects will have a 
larger SD compared to when they are far from the origin. This property 
can be applied to find the properties of clusters with varying sizes and 
densities. Furthermore, SD is neither an f-divergence nor a Bregman 
divergence and is invariant under the Hadamard product [45].

The CM ranges from 0 to ∞, where a low value is appropriate 
for a clustering configuration. The SM determines the magnitude of 
separation between clusters. The SD-based SM is calculated in this 
study by Eq. 11.

 (11)

where Mi and Mj are the PMFs of clusters Ci and Cj respectively. 
The SM lies in the interval [0, ∞), where a high value implies good 
clustering. The PM is a ratio of the CM to the proposed SM, and it is 
estimated using Eq. 12.

 (12)

Good clustering is characterized by a low CM and a high SM of 
clusters. Therefore, a smaller value of PM is suitable for a clustering 
configuration. Sometimes, it is required to normalize the SM, and thus 
its value becomes non-zero in a domain since the zero value of SM will 
make an undefined value of the proposed index, PM, as shown in Eq. 
12. Hence, Eq. 11 is further normalized.

 (13)

where δ is a constant and the value of δ → 0, further estimated error 
in normalization is  which is less significant in the possible range 
of SM. Normalized SM will be used throughout the paper to avoid an 
undefined value.

E. Complexity Analysis
The complexity associated with CM and SM is O(nd) and O(k2dE) 

respectively, where E is the number of steps to estimate the SD between 
two clusters. The complexity of PM is represented by O (nd + k2dE) 
since n ≥ d and n ≥ k is considered in this study. Thus the complexity 
of the proposed CVI is linear.

IV. Experimental Results and Discussion

A laptop Intel(R) Core(TM) i7-2620M CPU@2.70GHz and 4-GB 
RAM running on Windows 10 having a 64-bits Python 3.6.5 compiler 
are considered for this study. All the work is carried out in Spyder 
3.2.8’s Python development environment.

A. Description of Databases
A total of 10 databases of two classes, namely synthetic and real-

world are considered in this work to prove the effectiveness of the 
PM over some of the most popular existing internal CVIs. Synthetic 
databases: Three databases, namely Blobs, Varied Distributed data, 
and Anisotropically Distributed Data, are created in this study. The 
title of the databases, the total number of data objects in each database, 
the total number of features in each data object, and the number of 
clusters are noted in Table II. The Blobs database is produced by an 
isotropic Gaussian function with three classes having 1500 data objects 
or samples and two features. The varied distributed data is produced 
with varied variance in the data and has 1500 samples with 3 classes in 
2D space, whereas Anisotropicly distributed database is generated by 
transforming the data, which is Anisotropically distributed or aligned 
on a specific axis. This database also has 1500 samples, three classes, 
and two features. UCI and Kaggle repository databases: Seven 
popular realistic databases, viz., Digits, Iris, Wine, Avila, Shuttle, Breast 
Cancer, and Letter Recognition, are adopted from the UCI repository 
[46], [47]. The short description of each of these UCI databases is also 
reported in Table II. All the databases are renamed as DBi, where i 
varies from 1 to 10.

TABLE II. Datasets Characteristics

S. No. Datasets No of data 
objects

No of 
features Clusters

1 Varied distributed data (DB1) 1500 2 3

2
Anisotropicly distributed data 

(DB2)
1500 2 3

3 Blobs (DB3) 1500 2 3

4 Breast cancer database (DB4) 569 30 2

5 Iris database (DB5) 150 4 3

6 Wine database (DB6) 178 13 3

7 Avila database (DB7) 10430 10 12

8 Digits database (DB8) 1797 64 10

9
Letter recognition database 

(DB9)
20000 16 26

10 Shuttle database (DB10) 43500 9 7

B. Results and Comparison
A couple of experiments are conducted to prove the effectiveness 

of PM over some of the existing internal CVIs in different scenarios, 
which are as follows:

1. The Impact of Monotonicity
The first experiment aims to study the monotonicity behavior of 

three internal CVIs, namely RMSSTDI, RSI, and MHI. Three synthetic 
databases, namely DB1, DB2, and DB3 are considered, where clusters 
are well-separated. Fig. 2 (a), (c), and (e) plot the datasets DB1, DB2, 
and DB3 along the x and y axes on a 2D plane, respectively. Here, fuzzy 
k-means (FKM) is applied to the three databases mentioned above, 
and the values of RMSSTDI, RSI, and MHI are computed, which are 
labeled as FKM-RMSSTDI, FKM-RSI, and FKM-MHI, respectively. Fig.  
2 (b), (d), and (f) show the values of FKM-RMSSTDI, FKM-RSI, and 
FKM-MHI, respectively, that are obtained by varying the number of 
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clusters, k, from 2 to 29 as inputs because the datasets discussed in 
Table II have an actual number of clusters in the range of 2 to 26. The 
other information on the results is not pertinent to this experiment. 
The vertical axis of curves or graphs in Fig. 2 is scaled for better 
visualization or analysis. When the value of k increases then value of 
numerator in  will decrease. The value of (n − k) 
is regarded as a constant because k ≪ n. Therefore, RMSSTDI decreases 
with an increase in the k-value in Fig. 2 (b), (d), and (f). Further, RSI 
specifics a ratio of between clusters sum of squares to the total sum 
of squares. Hence, RSI increases as the value of k increases, as shown 
in Fig. 2 (b), (d), and (f). Similarly, MHI increases as the value of k 

increases, according to Fig. 2 (b), (d), and (f), because with an increase 
in k more pairs of distances are calculated. Furthermore, RMSSTDI is 
only based on CM, and RSI and MHI rely only on SM. According to 
the property of monotonicity, the curves of RMSSTDI, RSI, and MHI 
will be either downward or upward. It is quoted that the value of k 
is optimal at the “elbow” point, where a shift in the curve appears. 
Thus, the empirical results in Fig. 2 prove that the RMSSRDI, RSI, and 
MHI monotonically decrease or increase as the number of clusters, 
k, increases in the range from 2 to 29. However, the determination 
of a shift in the curve is rather a tedious and subjective task, thus the 
monotonicity is not discussed in the further sections.

(a) DB1 (b) Analysis of internal CVIs on DB1

(c) DB2 (d) Analysis of internal CVIs on DB2

(e) DB3 (f) Analysis of internal CVIs on DB3
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Fig. 2. DB1, DB2, and DB3 are plotted on the plane, different classes are shown with different colors and result of internal CVIs on database in the right.
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2. The Impact of Well-Separated Clusters
The aim of the 2nd experiment is to determine the optimal value of k 

for the databases, where well-separated clusters are present. The steps 
involved in estimating the optimal value of k for the best partitions 
using internal CVIs are as follows:

• Step 1: Initialize a clustering algorithm before applying it to a 
database.

• Step 2: A set of parameters of the algorithm is fixed in order to 
achieve clustering results.

• Step 3: Calculate the corresponding internal CVIs after clustering.

• Step 4: Select the optimal value of internal CVIs for best partitions.

Here, the values of six internal CVIs viz., SI, CHI, DBI, DVI, JI, and 
PM are computed after applying FKM and spectral clustering (SC) [48] 
on three databases, namely DB1, DB2, and DB3 and results are reported 
in Fig. 3 (a), (b), and (c) respectively. The FKM-SI, FKM-CHI, FKM-DBI, 
FKM-DVI, FKM-JI, and FKM-PM specify the values of SI, CHI, DBI, 
DVI, JI, and PM after executing FKM while SC-SI, SC-CHI, SC-DBI, 
SC-DVI, SC-JI, and SC-PM are employed to represent the values of 
SI, CHI, DBI, DVI, JI, and PM after applying SC. Fig. 3 displays the 
values of FKM-SI, FKM-CHI, FKM-DBI, FKM-DVI, FKM-JI, FKM-PM, 
SC-SI, SC-CHI, SC-DBI, SC-DVI, SC-JI, and SC-PM that are obtained 
by varying the value of k in the range of 2 to 29. The optimal values 
of CVIs labeled by a hexagon marker in Fig. 3 specify either maximum 
or minimum values, which demonstrate the actual values of k in the 
databases. It is clear from Fig. 3 (a) that SC-PM, FKM-PM, FKM-JI, SC-JI, 
SC-DVI, SC-CHI, SC-SI, FKM-CHI, and FKM-SI determine the optimal 
value of k, which is the same as the exact number of clusters in DB1. 
Moreover, the remaining CVIs produce values of k, which are closer to 
the actual number of clusters. It is also observed from Fig. 3 (b) that the 
FKM-PM and FKM-JI compute the optimal number of clusters, which 
are equal to the real number of clusters in DB2. Furthermore, FKM-SI, 
FKM-DBI, SC-SI, SC-DBI, SC-DVI, SC-PM, FKM-JI, and SC-JI are also 
in proximity to the optimal clusters. On the other hand, the remaining 
CVIs are not near-optimal results. Fig. 3 (c) shows the results of DB3 

and that FKM-SI, FKM-CHI, FKM-DBI, FKM-PM, SC-DBI, SC-PM, 
FKM-JI, SC-JI, and SC-CHI achieve the optimal value for the clusters.

3. The Impact of Slightly Overlapped Clusters
The third experiment aims to decide the optimal value of k for 

the databases, namely DB4, DB5, and DB6, where slightly overlapping 
clusters are present. However, principal component analysis is 
adopted in exploratory data analysis by transforming the data to a 
new coordinate system in the case of high-dimensional data and then 
plotting the first two principal components [49], [50]. The first two 
principal components of datasets DB4, DB5, and DB6 are mapped on 
a 2D plane, which are displayed in Fig. 4 (a), (c), and (e), respectively. 
Here, slightly overlapping clusters are denoted by different colors. 

Again, the values of six internal CVIs, viz. SI, CHI, DBI, DVI, JI, and 
PM, are computed after applying FKM and SC on the three databases 
mentioned above, and the outcomes are noted in Fig. 4 (b), (d), and 
(f), respectively. Here, we run the clustering algorithms for different 
values of k in the range of 2 to 29. We can find out the exact values of 
k by considering the optimum values of the curves of the FKM-PM and 
SC-PM in most cases. Moreover, PM always helps to decide the exact 
value of k because of the use of non-linear similarity measures.

4. The Impact of Highly Overlapped Clusters
The focus of the fourth experiment is to estimate the optimal value 

of k for the databases, namely DB7, DB8, DB9, and DB10, where 
clusters are highly significant. The first two principal components of 
datasets DB7, DB8, DB9, and DB10 are mapped on a 2D plane, which 
are displayed in Fig. 5 (a), (c), (e), and (g), respectively. Here, different 
colors are employed to represent clusters. Again, the values of six 
internal CVIs, viz. SI, CHI, DBI, DVI, JI, and PM, are calculated after 
applying FKM and SC on the four databases stated above, and the 
results are displayed in Fig. 5 (b), (d), (f), and (h), respectively. Here, 
both the clustering algorithms execute for different values of k in the 
range of 2 to 29. Focusing on the results, PM determines the optimal k 
for DB7 and DB8. But FKM-DBI, FKM-DVI, SC-SI, and SC-PM compute 
a value close to it. Furthermore, FKM-PM, SC-PM, and SC-DVI find the 
optimal k for DB9, and FKM-DBI and FKM-DVI are not far from them. 
Finally, for DB10, SC-PM and SC-DVI find the optimal k and FKM-DBI, 
FKM-DVI, FKM-PM, SC-DBI, and SC-JI compute a close value.

5. The Impact of Noise
The purpose of the 5th experiment is to determine how robust the 

proposed internal CVI named PM is against noisy features. First, noisy 
facets are included in the three well-separated databases, namely 
DB1, DB2, and DB3. Here, a noisy feature is produced by considering 
uniform random distribution in the limit of the length and size similar 
to features of the original database. The number of features will be 
doubled in a database after adding noisy features. The impact of noisy 
features is then analyzed in this study. Databases are shown in Fig. 6 
(a), (c), and (e). Again, the values of six internal CVIs, viz. SI, CHI, DBI, 
DVI, JI, and PM, are estimated after applying FKM and SC to the three 
noisy databases presented above, and the results are portrayed in Fig. 
6 (b), (d), and (f), respectively. Here, both the clustering algorithms 
execute for different values of k in the range of 2 to 29. It is clear from 
Fig. 6 that DBI and DVI are affected by noise and face difficulty while 
determining the optimum value of k. Further, the curve of CHI is close 
to the optimal number of clusters in the case of a noisy DB2 database. 
On the other hand, the optimum values of SI, JI, and PM are closer to 
the exact values of k.

We can conclude from the five experiments conducted above that 
the proposed internal CVI named PM successfully ascertains the 
optimal number of clusters for most databases. On the other hand, 

(a) Analysis of internal CVIs on DB1 (b) Analysis of internal CVIs on DB2 (c) Analysis of internal CVIs on DB3
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Fig. 3. An analysis of internal CVIs on well-separated databases.
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JI, SI, CHI, DBI, and DVI face difficulty while estimating the exact 
number of clusters due to various degrees of overlapping between 
clusters and noise in the databases.

6. The Comparative Analysis
Finally, the PM is compared with five popular internal CVIs, namely 

SI, CHI, DBI, DVI, and JI, after applying four clustering algorithms, 
viz. FKM, SC, Density-based Spatial Clustering of Applications with 
Noise (DBSCAN), and Density Peak Clustering (DPC) [51] on the ten 
databases mentioned in Section IV A. Here, FKM and SC take the exact 
number of clusters as inputs, whereas DBSCAN and DPC compute 

the number of clusters automatically. The values of six internal CVIs, 
including the PM, are reported in Table III. The mean (µ) and standard 
deviation (σ) obtained by the four clustering algorithms of each CVI 
are also noted in the last column of Table III. The µ and σ of the PM 
are highlighted by bold characters. A smaller value of σ in percentage 
specifies well-separated and compact clusters. In other words, a 
smaller value of σ demonstrates that the clustering configuration 
is appropriate. It is clear from Table III that the PM consistently 
outperforms five considered internal CVIs on ten databases in different 
scenarios presented in Table IV. Therefore, PM can be a great choice 
while evaluating clustering results.

(a) DB4 (b) Analysis of internal CVIs on DB4

(c) DB5 (d) Analysis of internal CVIs on DB5

(e) DB6 (f) Analysis of internal CVIs on DB6
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Fig. 4. In the left first two principal components of the DB4, DB5, and DB6 are plotted on the plane, to display the first and second corresponding vectors of the 
data matrix along the axes, different classes are shown with different colors and result of internal CVIs on database in the right.
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(a) DB7 (b) Analysis of internal CVIs on DB7 

(c) DB8 (d) Analysis of internal CVIs on DB8

(e) DB9 (f) Analysis of internal CVIs on DB9

(e) DB10 (f) Analysis of internal CVIs on DB10
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TABLE III. Comparative Analysis of Internal CVIs Using Clustering Algorithms

Dataset CVI FKM SC DBSCAN DPC μ ± σ %

DB1
SI 0.6468 0.61745 0.57755 0.62765 0.61736 ± 8.79207

CHI 5451.4914 3810.65643 3792.7863 4756.62157 4452.88893 ± 18.04829
DBI 0.56956 0.54442 0.8377 0.61122 0.64073 ± 20.94112
DVI 0.00785 0.01372 0.02252 0.03266 0.01919 ± 56.37716

JI 37.00884 39.56956 45.42931 34.47878 39.12162 ± 11.98999
PM 29.56956 30.33441 34.71643 28.57965 30.80001 ± 4.72936

DB2
SI 0.63551 0.48386 0.40725 0.50914 0.50894 ± 18.63688

CHI 3883.88156 3302.55351 5465.96704 3803.73873 4114.03521 ± 22.78248
DBI 0.49246 0.68642 0.71943 0.71491 0.65331 ± 16.56517
DVI 0.00899 0.0069 0.00897 0.00376 0.00716 ± 34.47394

JI 44.00376 41.71511 57.67286 43.40933 46.70027 ± 15.80087
PM 23.48942 30.68531 28.71825 22.72414 26.40428 ± 14.78514

DB3

SI 0.4863 0.42646 0.33207 0.46153 0.42659 ± 15.85287
CHI 2011.98126 1601.38907 1413.97578 1481.83841 1627.29613 ± 16.46313
DBI 0.73157 0.78999 0.84494 0.82526 0.79794 ± 6.23412
DVI 0.00825 0.01911 0.01358 0.00881 0.01244 ± 40.60672

JI 47.79319 43.01848 49.44894 44.48351 46.18603 ± 6.39381
PM 35.83244 39.79319 40.84494 37.81437 38.57124 ± 5.74615

DB4
SI 0.69726 0.50825 0.509 0.67526 0.59744 ± 17.23188

CHI 1300.20823 1089.92944 1245.56763 1251.53446 1221.80994 ± 8.52372
DBI 0.5044 0.62932 0.60906 0.55185 0.57366 ± 9.87326
DVI 0.01731 0.00726 0.01246 0.02148 0.01463 ± 41.98165

JI 60.5044 68.01731 74.07588 63.92288 66.6 ± 8.76054
PM 43.51121 49.63143 48.60891 41.56075 45.82808 ± 7.46948

DB5
SI 0.55282 0.55432 0.68674 0.68105 0.61873 ± 12.16705

CHI 561.62776 558.05804 502.82156 513.92455 534.10798 ± 8.69226
DBI 0.66197 0.64325 0.37927 0.39431 0.51970 ± 29.59093
DVI 0.09881 0.12181 0.338 0.07651 0.15901± 76.31654

JI 31.65626 32.11279 43.19802 32.38334 34.83760 ± 16.02200
PM 12.6709 14.65626 15.38275 13.40429 14.02855 ± 5.63466

DB6
SI 0.56448 0.57114 0.56067 0.56203 0.56458 ± 6.23471

CHI 552.85171 561.81566 670.62599 708.08668 623.34501 ± 12.48562
DBI 0.53573 0.53424 0.55357 0.54434 0.54197 ± 1.64643
DVI 0.02237 0.01626 0.0374 0.03399 0.02751 ± 35.91714

JI 48.01626 58.53573 51.64375 49.6353 51.95776 ± 8.91017
PM 27.53573 30.53424 31.55357 31.49413 30.27942 ± 0.82341

DB7

SI 0.1937 0.12995 0.1385 0.11951 0.14542 ± 22.77166
CHI 5285.5617 4519.20875 4333.76871 4212.35646 4587.72391± 10.50701
DBI 1.12112 1.29988 1.01121 0.8937 1.08148 ± 15.96829
DVI 0.00182 0.00529 0.00197 0.00194 0.00276 ± 61.38810

JI 24.12043 28.12995 35.10793 27.69293 28.76281 ± 15.97742
PM 8.12138 8.28694 7.57481 6.22372 7.55171 ± 12.39664

DB8

SI 0.1785 0.18289 0.17863 0.18066 ± 9.87675
CHI 169.36261 161.20475 162.1034 171.6 166.07133 ± 3.12864
DBI 1.9 1.88899 1.89937 1.84913 1.89023 ± 1.63817
DVI 0.21933 0.26126 0.17384 0.19023 0.21117 ± 18.15176

JI 42.87789 39.26069 49.92082 41.99865 43.51451 ± 10.43365
PM 15.92192 18.79859 18.90038 15.83872 17.36490 ± 1.34074

DB9
SI 0.1463 0.152 0.14713 0.139 0.14630 ± 6.85984

CHI 142 496 146 7167 1376.25764 ± 6.35297
DBI 1.6855 1.63312 1.64295 1.35005 1.57791 ± 9.73410
DVI 0.04536 0.04307 0.04136 0.04036 0.04254 ± 5.14657

JI 82.65005 96.04536 99.02207 94.98688 93.17609 ± 7.75123
PM 59.6855 66.62 60.63995 56.65005 60.89963 ± 3.57705

DB10
SI 0.97878 0.96967 0.97987 0.58508 0.87835 ± 22.26525

CHI 15723.30982 14946.92039 12879.555 16331.2233 14970.25213 ± 10.05018
DBI 0.34179 0.25082 0.3709 0.44054 0.35101 ± 22.39261
DVI 0.13045 0.24059 0.04701 0.09064 0.12717 ± 65.21501

JI 61.68367 58.31793 64.39526 63.44635 61.96080 ± 4.31864
PM 40.33581 39.25111 43.36991 41.43915 41.09900 ± 4.27706
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TABLE IV. The Overall Review of Some Internal CVIs

Index Well-
separated

Slightly-
separated

Highly-
overlapped Noise

SI G G X A
CHI G G X A
DVI G A X X
DBI A G X A
JI G G A A
PM G G G G

V. Conclusion

Internal CVIs are employed frequently in clustering to measure the 
goodness of the clustering algorithms without taking any external 
inputs. Most of the existing internal CVIs depend on CM and the 
geometric distance-based SM when computing the distance between 
cluster centers. The previous studies showed that such CVIs are not 
capable of producing accurate results, especially when the clusters of 
a database are highly overlapping. As a remedy, we introduce a new 
internal CVI, PM, using a modified CM and an updated SM based on 
the notion of SD. Moreover, SD is defined on the cone of HPDM and is 

(a) Noisy-DB1 (b) Analysis of internal CVIs on Noisy-DB1

(c) Noisy-DB2 (d) Analysis of internal CVIs on Noisy-DB2

(e) Noisy-DB3 (f) Analysis of internal CVIs on Noisy-DB3
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Fig. 6. In the left noisy-databases are plotted on the plane, different classes are shown with different colors and result of internal CVIs on noisy-database in the right.
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shown to have experimental and computational advantages over the 
other approaches in many applications. On the other hand, SD is a 
point-to-point distance measure that is motivated by the definition 
of SD. It is defined in the open cone of PDM. Initially, clusters of a 
database are modeled using density functions by applying a non-
parametric kernel density estimation method. The PM is defined as 
the ratio of the modified CM to the updated SM. A smaller value of 
the PM indicates that the clustering configuration is appropriate. 
Empirical results illustrate that the PM is proficient in determining the 
exact number of clusters and the best partition for several superficial 
and realistic databases, including the database with arbitrary cluster 
shapes. The proposed internal CVI faces difficulty in ascertaining the 
optimal number of clusters when noisy features are included in a few 
databases. In addition, the proposed internal CVI works efficiently for 
databases having only numerical attributes. The latter two aspects 
deserve further study. In future work, SD may be explored to develop 
an external CVI.
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