• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 7, nº 2, december 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 7, nº 2, december 2021
    • Ver ítem

    Performance and Convergence Analysis of Modified C-Means Using Jeffreys-Divergence for Clustering

    Autor: 
    Seal, Ayan
    ;
    Karlekar, Aditya
    ;
    Krejcar, Ondrej
    ;
    Herrera-Viedma, Enrique
    Fecha: 
    12/2021
    Palabra clave: 
    C-means; clustering; convergence; jeffreys-divergence; similarity measure; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13042
    DOI: 
    https://doi.org/10.9781/ijimai.2021.04.009
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2941
    Open Access
    Resumen:
    The size of data that we generate every day across the globe is undoubtedly astonishing due to the growth of the Internet of Things. So, it is a common practice to unravel important hidden facts and understand the massive data using clustering techniques. However, non- linear relations, which are essentially unexplored when compared to linear correlations, are more widespread within data that is high throughput. Often, nonlinear links can model a large amount of data in a more precise fashion and highlight critical trends and patterns. Moreover, selecting an appropriate measure of similarity is a well-known issue since many years when it comes to data clustering. In this work, a non-Euclidean similarity measure is proposed, which relies on non-linear Jeffreys-divergence (JS). We subsequently develop c- means using the proposed JS (J-c-means). The various properties of the JS and J-c-means are discussed. All the analyses were carried out on a few real-life and synthetic databases. The obtained outcomes show that J-c-means outperforms some cutting-edge c-means algorithms empirically.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_2_13_0.pdf
    Tamaño: 1.075Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 2, december 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    28
    53
    63
    98
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    46
    43
    77

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Imputation of Rainfall Data Using the Sine Cosine Function Fitting Neural Network 

      Chan Chiu, Po; Selamat, Ali; Krejcar, Ondrej; Kuok Kuok, King; Herrera-Viedma, Enrique; Fenza, Giuseppe (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility ...
    • Enhancing big data feature selection using a hybrid correlation-based feature selection 

      Mohamad, Masurah; Selamat, Ali; Krejcar, Ondrej; González-Crespo, Rubén ; Herrera-Viedma, Enrique; Fujita, Hamido (2021)
      This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search ...
    • Multilayer Framework for Botnet Detection Using Machine Learning Algorithms 

      Ibrahim, Wan Nur Hidayah; Anuar, Syahid; Selamat, Ali; Krejcar, Ondrej; González-Crespo, Rubén; Herrera-Viedma, Enrique; Fujita, Hamido (IEEE Access, 2021)
      A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja