Mostrar el registro sencillo del ítem

dc.contributor.authorJames Fong, Simon
dc.contributor.authorLobo Marques, João Alexandre
dc.contributor.authorLi, G.
dc.contributor.authorDey, Nilanjan
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorHerrera-Viedma, Enrique
dc.contributor.authorBernardo Gois, F. Nauber
dc.contributor.authorXavier Neto, José
dc.date2022
dc.date.accessioned2023-09-13T11:27:39Z
dc.date.available2023-09-13T11:27:39Z
dc.identifier.citationFong, S.J. et al. (2022). The Comparison of Different Linear and Nonlinear Models Using Preliminary Data to Efficiently Analyze the COVID-19 Outbreak. In: Marques, J.A.L., Fong, S.J. (eds) Epidemic Analytics for Decision Supports in COVID19 Crisis. Springer, Cham. https://doi.org/10.1007/978-3-030-95281-5_3es_ES
dc.identifier.isbn9783030952815
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15266
dc.description.abstractThe COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in history, and the most recent one has unique characteristics, which are tightly connected to the current society’s lifestyle and beliefs, creating an environment of uncertainty. Because of that, the development of mathematical/computational models to forecast the pandemic behavior since its beginning, i.e., with a restricted amount of data collected, is necessary. This chapter focuses on the analysis of different data mining techniques to allow the pandemic prediction with a small amount of data. A case study is presented considering the data from Wuhan, the Chinese city where the virus was first detected, and the place where the major outbreak occurred. The PNN + CF method (Polynomial Neural Network with Corrective Feedback) is presented as the technique with the best prediction performance. This is a promising method that might be considered in future eventual waves of the current pandemic or event to have a suitable model for future epidemic outbreaks around the world.es_ES
dc.language.isoenges_ES
dc.publisherEpidemic Analytics for Decision Supports in COVID19 Crisises_ES
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-030-95281-5_3es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectprediction modelses_ES
dc.subjectmachine learninges_ES
dc.subjectartificial neural networkses_ES
dc.subjectepidemiologyes_ES
dc.subjectScopus(2)es_ES
dc.titleThe Comparison of Different Linear and Nonlinear Models Using Preliminary Data to Efficiently Analyze the COVID-19 Outbreakes_ES
dc.typebookPartes_ES
reunir.tag~ARIes_ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem