ResNet18 Supported Inspection of Tuberculosis in Chest Radiographs With Integrated Deep, LBP, and DWT Features
Autor:
Rajinikanth, Venkatesan
; Kadry, Seifedine
; Moreno-Ger, Pablo
Fecha:
06/2023Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/3318Resumen:
The lung is a vital organ in human physiology and disease in lung causes various health issues. The acute disease in lung is a medical emergency and hence several methods are developed and implemented to detect the lung abnormality. Tuberculosis (TB) is one of the common lung disease and premature diagnosis and treatment is necessary to cure the disease with appropriate medication. Clinical level assessment of TB is commonly performed with chest radiographs (X-ray) and the recorded images are then examined to identify TB and its harshness. This research proposes a TB detection framework using integrated optimal deep and handcrafted features. The different stages of this work include (i) X-ray collection and processing, (ii) Pretrained Deep-Learning (PDL) scheme-based feature mining, (iii) Feature extraction with Local Binary Pattern (LBP) and Discrete Wavelet Transform (DWT), (iv) Feature optimization with Firefly-Algorithm, (v) Feature ranking and serial concatenation, and (vi) Classification by means of a 5-fold cross confirmation. The result of this study validates that, the ResNet18 scheme helps to achieve a better accuracy with SoftMax (95.2%) classifier and Decision Tree Classifier (99%) with deep and concatenated features, respectively. Further, overall performance of Decision Tree is better compared to other classifiers.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
100 |
129 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
52 |
47 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier
Amin, Javeria; Anjum, Muhammad Almas; Sharif, Muhammad; Jabeen, Saima; Kadry, Seifedine; Moreno-Ger, Pablo (Computational Intelligence and Neuroscience, 2022)A brain tumor is an abnormal enlargement of cells if not properly diagnosed. Early detection of a brain tumor is critical for clinical practice and survival rates. Brain tumors arise in a variety of shapes, sizes, and ... -
A study on RGB image multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm
Rajinikanth, Venkatesan; Kadry, Seifedine; González-Crespo, Rubén ; Verdú, Elena (Universidad Internacional de la Rioja, 2021)In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, ... -
Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes
Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is non-invasive ...