• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Use of Data Mining to Predict the Influx of Patients to Primary Healthcare Centres and Construction of an Expert System

    Autor: 
    Cubillas, Juan Jose
    ;
    Ramos, Maria I.
    ;
    Feito, F.R.
    Fecha: 
    2022
    Palabra clave: 
    data mining; expert system; primary health care; resource optimization; Scopus; JCR
    Revista / editorial: 
    Applied Sciences (Switzerland)
    Citación: 
    Cubillas, J. J., Ramos, M. I., & Feito, F. R. (2022). Use of Data Mining to Predict the Influx of Patients to Primary Healthcare Centres and Construction of an Expert System. Applied Sciences, 12(22), 11453. MDPI AG. Retrieved from http://dx.doi.org/10.3390/app122211453
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14704
    DOI: 
    https://doi.org/10.3390/app122211453
    Dirección web: 
    https://www.mdpi.com/2076-3417/12/22/11453
    Open Access
    Resumen:
    In any productive sector, predictive tools are crucial for optimal management and decision-making. In the health sector, it is especially important to have information available in advance, as this not only means optimizing resources, but also improving patient care. This work focuses on the management of healthcare resources in primary care centres. The main objective of this work is to develop a model capable of predicting the number of patients who will demand health care in a primary care centre on a daily basis. This model is integrated into a decision support system that is accessible and easy to use by the manager through a web application. In this case, data from a primary care centre in the city of Jaén, Spain, were used. The model was estimated using spatial-temporal training data, the daily health demand data in that centre for five years, and a series of meteorological data. Different regression algorithms have been employed. The workflow requires selecting the parameters that influence the health demand prediction and discarding those that distort the model. The main contribution of this research is the daily prediction of the number of patients attending the health centre with absolute errors better than 3%, which is crucial for decision-making on the sizing of health resources in a primary care health centre.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: use_of_data_mining_to_predict_the_influx_of_patients_to_primary_healthcare_centres.pdf
    Tamaño: 2.962Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    3

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Machine Learning Model for Early Prediction of Crop Yield, Nested in a Web Application in the Cloud: A Case Study in an Olive Grove in Southern Spain 

      Cubillas, Juan Jose; Ramos, Maria I.; Jurado, Juan Manuel; Feito, F.R. (Agriculture, 2022)
      Predictive systems are a crucial tool in management and decision-making in any productive sector. In the case of agriculture, it is especially interesting to have advance information on the profitability of a farm. In this ...
    • Optimización de la calidad asistencial de urgencias y emergencias mediante bases de datos multidisciplinares 

      Arias, J.C.; Cubillas, Juan Jose; Ramos, Maria I.; Feito, F.R. (Iberian Conference on Information Systems and Technologies, CISTI, 2022)
      En la actualidad una de las técnicas más importantes para mejorar la calidad en la asistencia del paciente es el análisis exhaustivo de todos los aspectos de dicha asistencia mediante la utilización de bases de datos ...
    • Optimising Health Emergency Resource Management from Multi-Model Databases 

      Arias, J.C.; Cubillas, Juan Jose; Ramos, Maria I. (Electronics (Switzerland), 2022)
      The health care sector is one of the most sensitive sectors in our society, and it is believed that the application of specific and detailed database creation and design techniques can improve the quality of patient care. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja