Mostrar el registro sencillo del ítem

dc.contributor.authorBobadilla, Jesús
dc.contributor.authorDueñas-Lerín, Jorge
dc.contributor.authorOrtega, Fernando
dc.contributor.authorGutiérrez, Abraham
dc.date2024-06
dc.date.accessioned2023-05-03T10:32:26Z
dc.date.available2023-05-03T10:32:26Z
dc.identifier.citationJesús Bobadilla, Jorge Dueñas-Lerín, Fernando Ortega, Abraham Gutiérrez (2024). "Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems", International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, issue Regular Issue, no. 6, pp. 15-23. https://doi.org/10.9781/ijimai.2023.04.008
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14594
dc.description.abstractMatrix factorization models are the core of current commercial collaborative filtering Recommender Systems. This paper tested six representative matrix factorization models, using four collaborative filtering datasets. Experiments have tested a variety of accuracy and beyond accuracy quality measures, including prediction, recommendation of ordered and unordered lists, novelty, and diversity. Results show each convenient matrix factorization model attending to their simplicity, the required prediction quality, the necessary recommendation quality, the desired recommendation novelty and diversity, the need to explain recommendations, the adequacy of assigning semantic interpretations to hidden factors, the advisability of recommending to groups of users, and the need to obtain reliability values. To ensure the reproducibility of the experiments, an open framework has been used, and the implementation code is provided.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligencees_ES
dc.relation.ispartofseries;vol. 8, nº 6
dc.relation.uri
dc.rightsopenAccesses_ES
dc.subjectcollaborative filteringes_ES
dc.subjectmatrix factorizationes_ES
dc.subjectrecommendation systemses_ES
dc.subjectIJIMAIes_ES
dc.titleComprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systemses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2023.04.008


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem