A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups
Autor:
Bobadilla, Jesús
; Gutiérrez, Abraham
; Alonso, Santiago
; Hurtado, Remigio
Fecha:
06/2020Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2758Resumen:
In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, colleagues, etc. Our proposal deals with large numbers of automatically detected groups. Marketing and electronic commerce are typical targets of large homogenous groups. Large groups present a major difficulty in terms of automatically achieving homogeneity, equilibrated size and accurate recommendations. We provide a method that combines diverse machine learning algorithms in an original way: homogeneous groups are detected by means of a clustering based on hidden factors instead of ratings. Predictions are made using a virtual user model, and virtual users are obtained by performing a hidden factors aggregation. Additionally, this paper selects the most appropriate dimensionality reduction for the explained RS aim. We conduct a set of experiments to catch the maximum cumulative deviation of the ratings information. Results show an improvement on recommendations made to large homogeneous groups. It is also shown the desirability of designing specific methods and algorithms to deal with automatically detected groups.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
75 |
90 |
104 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
56 |
71 |
48 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Classification-based Deep Neural Network Architecture for Collaborative Filtering Recommender Systems
Bobadilla, Jesús; Ortega, Fernando; Gutiérrez, Abraham; Alonso, Santiago (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)This paper proposes a scalable and original classification-based deep neural architecture. Its collaborative filtering approach can be generalized to most of the existing recommender systems, since it just operates on the ... -
Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities
Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; González-Prieto, Ángel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2022)Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models that obtain accurate predictions and recommendations. These models are regression-based, and they just return ... -
Testing Deep Learning Recommender Systems Models on Synthetic GAN-Generated Datasets
Bobadilla, Jesús; Gutiérrez, Abraham (International Journal of Interactive Multimedia and Artificial Intelligence, 10/2023)The published method Generative Adversarial Networks for Recommender Systems (GANRS) allows generating data sets for collaborative filtering recommendation systems. The GANRS source code is available along with a representative ...