• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem

    Classification-based Deep Neural Network Architecture for Collaborative Filtering Recommender Systems

    Autor: 
    Bobadilla, Jesús
    ;
    Ortega, Fernando
    ;
    Gutiérrez, Abraham
    ;
    Alonso, Santiago
    Fecha: 
    03/2020
    Palabra clave: 
    recommendation systems; classification; neural network; collaborative filtering; deep learning; scalable neural architecture; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12715
    DOI: 
    https://doi.org/10.9781/ijimai.2020.02.006
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2755
    Open Access
    Resumen:
    This paper proposes a scalable and original classification-based deep neural architecture. Its collaborative filtering approach can be generalized to most of the existing recommender systems, since it just operates on the ratings dataset. The learning process is based on the binary relevant/non-relevant vote and the binary voted/non-voted item information. This data reduction provides a new level of abstraction and it makes possible to design the classification-based architecture. In addition to the original architecture, its prediction process has a novel approach: it does not need to make a large number of predictions to get recommendations. Instead to run forward the neural network for each prediction, our approach runs forward the neural network just once to get a set of probabilities in its categorical output layer. The proposed neural architecture has been tested by using the MovieLens and FilmTrust datasets. A state-of-the-art baseline that outperforms current competitive approaches has been used. Results show a competitive recommendation quality and an interesting quality improvement on large number of recommendations, consistent with the architecture design. The architecture originality makes it possible to address a broad range of future works.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20206_1_8_pdf_28842.pdf
    Tamaño: 2.657Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 1, march 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    174
    280
    342
    191
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    209
    225
    182
    80

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups 

      Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; Hurtado, Remigio (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2020)
      In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, ...
    • Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities 

      Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; González-Prieto, Ángel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2022)
      Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models that obtain accurate predictions and recommendations. These models are regression-based, and they just return ...
    • Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems 

      Bobadilla, Jesús; Dueñas-Lerín, Jorge; Ortega, Fernando; Gutiérrez, Abraham (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2024)
      Matrix factorization models are the core of current commercial collaborative filtering Recommender Systems. This paper tested six representative matrix factorization models, using four collaborative filtering datasets. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja