Classification-based Deep Neural Network Architecture for Collaborative Filtering Recommender Systems
Autor:
Bobadilla, Jesús
; Ortega, Fernando
; Gutiérrez, Abraham
; Alonso, Santiago
Fecha:
03/2020Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2755Resumen:
This paper proposes a scalable and original classification-based deep neural architecture. Its collaborative filtering approach can be generalized to most of the existing recommender systems, since it just operates on the ratings dataset. The learning process is based on the binary relevant/non-relevant vote and the binary voted/non-voted item information. This data reduction provides a new level of abstraction and it makes possible to design the classification-based architecture. In addition to the original architecture, its prediction process has a novel approach: it does not need to make a large number of predictions to get recommendations. Instead to run forward the neural network for each prediction, our approach runs forward the neural network just once to get a set of probabilities in its categorical output layer. The proposed neural architecture has been tested by using the MovieLens and FilmTrust datasets. A state-of-the-art baseline that outperforms current competitive approaches has been used. Results show a competitive recommendation quality and an interesting quality improvement on large number of recommendations, consistent with the architecture design. The architecture originality makes it possible to address a broad range of future works.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
174 |
280 |
320 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
209 |
225 |
170 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups
Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; Hurtado, Remigio (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2020)In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, ... -
Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities
Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; González-Prieto, Ángel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2022)Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models that obtain accurate predictions and recommendations. These models are regression-based, and they just return ... -
Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems
Bobadilla, Jesús; Dueñas-Lerín, Jorge; Ortega, Fernando; Gutiérrez, Abraham (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2024)Matrix factorization models are the core of current commercial collaborative filtering Recommender Systems. This paper tested six representative matrix factorization models, using four collaborative filtering datasets. ...