• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities

    Autor: 
    Bobadilla, Jesús
    ;
    Gutiérrez, Abraham
    ;
    Alonso, Santiago
    ;
    González-Prieto, Ángel
    Fecha: 
    06/2022
    Palabra clave: 
    neural classification; neural collaborative filtering; recommendation systems; artificial intelligence; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13564
    DOI: 
    https://doi.org/10.9781/ijimai.2021.08.010
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2997
    Open Access
    Resumen:
    Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models that obtain accurate predictions and recommendations. These models are regression-based, and they just return rating predictions. This paper proposes the use of a classification-based approach, returning both rating predictions and their reliabilities. The extra information (prediction reliabilities) can be used in a variety of relevant collaborative filtering areas such as detection of shilling attacks, recommendations explanation or navigational tools to show users and items dependences. Additionally, recommendation reliabilities can be gracefully provided to users: “probably you will like this film”, “almost certainly you will like this song”, etc. This paper provides the proposed neural architecture; it also tests that the quality of its recommendation results is as good as the state of art baselines. Remarkably, individual rating predictions are improved by using the proposed architecture compared to baselines. Experiments have been performed making use of four popular public datasets, showing generalizable quality results. Overall, the proposed architecture improves individual rating predictions quality, maintains recommendation results and opens the doors to a set of relevant collaborative filtering fields.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_2.pdf
    Tamaño: 793.7Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    92
    25
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    33
    5

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Classification-based Deep Neural Network Architecture for Collaborative Filtering Recommender Systems 

      Bobadilla, Jesús; Ortega, Fernando; Gutiérrez, Abraham; Alonso, Santiago (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      This paper proposes a scalable and original classification-based deep neural architecture. Its collaborative filtering approach can be generalized to most of the existing recommender systems, since it just operates on the ...
    • A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups 

      Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; Hurtado, Remigio (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2020)
      In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, ...
    • DeepFair: Deep Learning for Improving Fairness in Recommender Systems 

      Bobadilla, Jesús; Lara-Cabrera, Raúl; González-Prieto, Ángel; Ortega, Fernando (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations. Moreover, the trade-off between equity and precision makes it difficult to obtain recommendations that meet both ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja