• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    A new algorithm for time series prediction using machine learning models

    Autor: 
    Jahnavi, Yeturu
    ;
    Elango, Poongothai
    ;
    Raja, S. P.
    ;
    Parra Fuente, Javier
    ;
    Verdú, Elena
    Fecha: 
    2023
    Palabra clave: 
    grid search; kernel function; machine learning; recursive parameter optimization; time series prediction; Scopus; Emerging
    Revista / editorial: 
    Evolutionary Intelligence
    Citación: 
    Jahnavi, Y., Elango, P., Raja, S.P. et al. A new algorithm for time series prediction using machine learning models. Evol. Intel. (2022). https://doi.org/10.1007/s12065-022-00710-5
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14518
    DOI: 
    https://doi.org/10.1007/s12065-022-00710-5
    Dirección web: 
    https://link.springer.com/article/10.1007/s12065-022-00710-5#citeas
    Resumen:
    Two stage grid search accepted as a promising heuristic search technique, involves a search performed in two stages. In the first stage a search is performed in coarse grain/low resolution to identify the optimal region and, in the second stage, a fine grain/high resolution search is performed in the neighborhood of the optimal region to identify the optimal parameters. Performing a search in two stages considerably reduces the computational complexity when compared to the basic grid search algorithm. However, an exhaustive search is to be carried out in the subspace during the second stage which may again be a computationally expensive task. The main contribution of this paper is to develop a new heuristic search technique which explores the discrete parameter space dimension wise recursively. The time complexity of the proposed algorithm is less than that of the two-stage grid search. The performance of the proposed algorithm in terms of required number of probes and time for optimal model selection, compared with the two-stage grid search, is verified for correctness and efficiency.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    28
    104
    241
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Regularized sparse features for noisy speech enhancement using deep neural networks 

      Khattak, Muhammad Irfan; Saleem, Nasir; Gao, Jiechao; Verdú, Elena ; Parra Fuente, Javier (Computers and Electrical Engineering, 2022)
      A speech enhancement algorithm improves the perceptual aspects of a speech degraded by noise signals. We propose a phase-aware deep neural network (DNN) using the regularized sparse features for speech enhancement. A ...
    • Modelling and control of fuzzy-based systems using intelligent water drop algorithm 

      Dass, Anuli; Srivastava, Smriti; Gupta, Monika; Khari, Manju; Parra Fuente, Javier; Verdú, Elena (Expert Systems, 2023)
      Identification and controlling of non-linear and complex dynamical systems have been a major concern and a serious topic of study in the field of adaptive control systems. Various techniques based on artificial intelligence ...
    • E2E-V2SResNet: Deep residual convolutional neural networks for end-to-end video driven speech synthesis 

      Saleem, Nasir; Gao, Jiechao; Irfan, Muhammad; Verdú, Elena ; Parra Puente, Javier (Image and vision computing, 2022)
      Speechreading which infers spoken message from a visually detected articulated facial trend is a challenging task. In this paper, we propose an end-to-end ResNet (E2E-ResNet) model for synthesizing speech signals from the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja