Mostrar el registro sencillo del ítem

dc.contributor.authorJahnavi, Yeturu
dc.contributor.authorElango, Poongothai
dc.contributor.authorRaja, S. P.
dc.contributor.authorParra Fuente, Javier
dc.contributor.authorVerdú, Elena
dc.date2023
dc.date.accessioned2023-04-12T11:52:33Z
dc.date.available2023-04-12T11:52:33Z
dc.identifier.citationJahnavi, Y., Elango, P., Raja, S.P. et al. A new algorithm for time series prediction using machine learning models. Evol. Intel. (2022). https://doi.org/10.1007/s12065-022-00710-5es_ES
dc.identifier.issn1864-5909
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14518
dc.description.abstractTwo stage grid search accepted as a promising heuristic search technique, involves a search performed in two stages. In the first stage a search is performed in coarse grain/low resolution to identify the optimal region and, in the second stage, a fine grain/high resolution search is performed in the neighborhood of the optimal region to identify the optimal parameters. Performing a search in two stages considerably reduces the computational complexity when compared to the basic grid search algorithm. However, an exhaustive search is to be carried out in the subspace during the second stage which may again be a computationally expensive task. The main contribution of this paper is to develop a new heuristic search technique which explores the discrete parameter space dimension wise recursively. The time complexity of the proposed algorithm is less than that of the two-stage grid search. The performance of the proposed algorithm in terms of required number of probes and time for optimal model selection, compared with the two-stage grid search, is verified for correctness and efficiency.es_ES
dc.language.isoenges_ES
dc.publisherEvolutionary Intelligencees_ES
dc.relation.urihttps://link.springer.com/article/10.1007/s12065-022-00710-5#citeases_ES
dc.rightsrestrictedAccesses_ES
dc.subjectgrid searches_ES
dc.subjectkernel functiones_ES
dc.subjectmachine learninges_ES
dc.subjectrecursive parameter optimizationes_ES
dc.subjecttime series predictiones_ES
dc.subjectScopuses_ES
dc.subjectEmerginges_ES
dc.titleA new algorithm for time series prediction using machine learning modelses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s12065-022-00710-5


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem