• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Regularized sparse features for noisy speech enhancement using deep neural networks

    Autor: 
    Khattak, Muhammad Irfan
    ;
    Saleem, Nasir
    ;
    Gao, Jiechao
    ;
    Verdú, Elena
    ;
    Parra Fuente, Javier
    Fecha: 
    2022
    Palabra clave: 
    DNN; intelligibility; phase estimation; sparseness; speech enhancement; speech quality; Scopus; JCR
    Revista / editorial: 
    Computers and Electrical Engineering
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/13885
    DOI: 
    https://doi.org/10.1016/j.compeleceng.2022.107887
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0045790622001756?via%3Dihub
    Open Access
    Resumen:
    A speech enhancement algorithm improves the perceptual aspects of a speech degraded by noise signals. We propose a phase-aware deep neural network (DNN) using the regularized sparse features for speech enhancement. A regularized sparse decomposition is applied to noisy speech and the obtained sparse features are combined with robust acoustic features to train DNN. Two time-frequency masks including ideal ratio mask (IRM) and ideal binary mask (IBM) are estimated. An intelligibility improvement filter is applied as post-processer to further improve the intelligibility. During waveform reconstruction, the estimated phase is used for better quality. The results show that the proposed algorithm achieves better speech intelligibility and quality. Besides, less residual noise and speech distortion is observed. By using the TIMIT and LibriSpeech databases, the proposed algorithm improved the intelligibility and quality by 14.61% and 42.11% over the noisy speech.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    12
    41
    100
    105
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • E2E-V2SResNet: Deep residual convolutional neural networks for end-to-end video driven speech synthesis 

      Saleem, Nasir; Gao, Jiechao; Irfan, Muhammad; Verdú, Elena ; Parra Puente, Javier (Image and vision computing, 2022)
      Speechreading which infers spoken message from a visually detected articulated facial trend is a challenging task. In this paper, we propose an end-to-end ResNet (E2E-ResNet) model for synthesizing speech signals from the ...
    • On improvement of speech intelligibility and quality: a survey of unsupervised single channel speech enhancement algorithms 

      Saleem, Nasir; Khattak, Muhammad Irfan; Verdú, Elena (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2020)
      Many forms of human communication exist; for instance, text and nonverbal based. Speech is, however, the most powerful and dexterous form for the humans. Speech signals enable humans to communicate and this usefulness of ...
    • On Improvement of Speech Intelligibility and Quality: A Survey of Unsupervised Single Channel Speech Enhancement Algorithms 

      Saleem, Nasir; Khattak, Muhammad Irfan; Verdú, Elena (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2020)
      Many forms of human communication exist; for instance, text and nonverbal based. Speech is, however, the most powerful and dexterous form for the humans. Speech signals enable humans to communicate and this usefulness of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja