• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Predicting the suitable fertilizer for crop based on soil and environmental factors using various feature selection techniques with classifiers

    Autor: 
    Mariammal, G.
    ;
    Suruliandi, A.
    ;
    Segovia Bravo, Kharla Andreina
    ;
    Raja, S. P.
    Fecha: 
    2023
    Palabra clave: 
    agriculture; fertilizer; heterogeneous stacked ensemble; modified recursive feature elimination; Scopus; JCR
    Revista / editorial: 
    Expert Systems
    Citación: 
    Mariammal, G., Suruliandi, A., Segovia‐Bravo, K. A., & Raja, S. P. (2022). Predicting the suitable fertilizer for crop based on soil and environmental factors using various feature selection techniques with classifiers. Expert Systems, e13024.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14483
    DOI: 
    https://doi.org/10.1111/exsy.13024
    Dirección web: 
    https://onlinelibrary.wiley.com/doi/10.1111/exsy.13024
    Resumen:
    Agriculture is an essential part of human life. The crop productivity is based on the soil and environmental factors. Different crops are cultivated in different areas. Nowadays, the crop productivity level is affected by the climate change and diseases in the crops. Due to this pest infestation, the crop growth is heavily affected. To overcome this problem, the right fertilizer for a particular crop has to be chosen and fertilizer helps farmers to improve the crop productivity rate. This process can be done by using various machine learning techniques. In this work, various features selection techniques with classifiers used to predict the suitable fertilizer for a crop. The experimental results show that recursive feature elimination along the proposed Heterogeneous Stacked Ensemble classifier gives better prediction rate than other methods.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    21
    73
    32
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Review: Presence, distribution and current pesticides used in Spanish agricultural practices 

      González García, Mariano; López-Sánchez, José Ignacio; Segovia Bravo, Kharla Andreina; Cima-Cabal, María Dolores; Peréz-Santín, Efren (Science of the Total Environment, 2022)
      To guarantee an adequate food supply for the world's growing population, intensive agriculture is necessary to ensure efficient food production. The use of pesticides helps maintain maximum productivity in intensive ...
    • Applicability domains of neural networks for toxicity prediction 

      Pérez-Santín, Efrén; de-la-Fuente-Valentín, Luis; González García, Marian; Segovia Bravo, Kharla Andreina; López Hernández, Fernando Carlos; López Sánchez, José Ignacio (AIMS Mathematics, 2023)
      In this paper, the term “applicability domain” refers to the range of chemical compounds for which the statistical quantitative structure-activity relationship (QSAR) model can accurately predict their toxicity. This is a ...
    • Deep Feature Representation and Similarity Matrix based Noise Label Refinement Method for Efficient Face Annotation 

      Suruliandi, A.; Kasthuri, A.; Raja, S. P. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Face annotation is a naming procedure that assigns the correct name to a person emerging from an image. Faces that are manually annotated by people in online applications include incorrect labels, giving rise to the issue ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja