Mostrar el registro sencillo del ítem

dc.contributor.authorMariammal, G.
dc.contributor.authorSuruliandi, A.
dc.contributor.authorSegovia Bravo, Kharla Andreina
dc.contributor.authorRaja, S. P.
dc.date2023
dc.date.accessioned2023-04-04T12:44:55Z
dc.date.available2023-04-04T12:44:55Z
dc.identifier.citationMariammal, G., Suruliandi, A., Segovia‐Bravo, K. A., & Raja, S. P. (2022). Predicting the suitable fertilizer for crop based on soil and environmental factors using various feature selection techniques with classifiers. Expert Systems, e13024.es_ES
dc.identifier.issn0266-4720
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14483
dc.description.abstractAgriculture is an essential part of human life. The crop productivity is based on the soil and environmental factors. Different crops are cultivated in different areas. Nowadays, the crop productivity level is affected by the climate change and diseases in the crops. Due to this pest infestation, the crop growth is heavily affected. To overcome this problem, the right fertilizer for a particular crop has to be chosen and fertilizer helps farmers to improve the crop productivity rate. This process can be done by using various machine learning techniques. In this work, various features selection techniques with classifiers used to predict the suitable fertilizer for a crop. The experimental results show that recursive feature elimination along the proposed Heterogeneous Stacked Ensemble classifier gives better prediction rate than other methods.es_ES
dc.language.isoenges_ES
dc.publisherExpert Systemses_ES
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1111/exsy.13024es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectagriculturees_ES
dc.subjectfertilizeres_ES
dc.subjectheterogeneous stacked ensemblees_ES
dc.subjectmodified recursive feature eliminationes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titlePredicting the suitable fertilizer for crop based on soil and environmental factors using various feature selection techniques with classifierses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1111/exsy.13024


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem