• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    An intelligent edge enabled 6G-flying ad-hoc network ecosystem for precision agriculture

    Autor: 
    Mukherjee, Amartya
    ;
    Kumar Panja, Ayan
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    Fecha: 
    2023
    Palabra clave: 
    agriculture; delivery ratio; edge computing; ensemble model; FANET; latency; MQTT; Scopus; JCR
    Revista / editorial: 
    Expert Systems
    Citación: 
    Mukherjee, A., Panja, A. K., Dey, N., & Crespo, R. G. (2022). An intelligent edge enabled 6G‐flying ad‐hoc network ecosystem for precision agriculture. Expert Systems, e13090.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14482
    DOI: 
    https://doi.org/10.1111/exsy.13090
    Dirección web: 
    https://onlinelibrary.wiley.com/doi/10.1111/exsy.13090
    Resumen:
    Unmanned aerial vehicle based precision agriculture is a predominant research area. The modern flying ad-hoc network leverages the advanced low latency vehicular communication and intelligent computing paradigms that help the ecosystem to grow up to the next level. In this work, we propose an ecosystem for precision agriculture that leverages the use of the opportunistic MQTT protocol in an edge-enabled intelligent drone network for sensing and performing crop prediction using an intelligent ensemble machine learning model. The proposed approach leverages the edge computing system that requires low energy devices and also exploits the ultra-low latency opportunistic message transfer methodology. The experimental results show the maximum of 0.9 message delivery ratio and a minimum of 600 ms latency is achieved by opportunistic MQTT protocol in an ultra-low latency sparse network scenario. A weighted ensemble model is deployed onto the edge enabled devices or the drones. An accuracy of 96.5% is achieved in predicting the type of crops that can be grown in the soil about the selected area of interest.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    34
    78
    87
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • PCHET: An efficient programmable cellular automata based hybrid encryption technique for multi-chat client-server applications 

      Roy, Satyabrata; Gupta, Rohit Kumar; Rawat, Umashankar; Dey, Nilanjan; González-Crespo, Rubén (Journal of Information Security and Applications, 12/2020)
      This paper demonstrates an efficient programmable Cellular Automata (CA) based hybrid encryption technique (PCHET) for chatting applications involving multiple clients who can chat simultaneously with each other. The ...
    • A non-linear multi-objective technique for hybrid peer-to-peer communication 

      Das, Santosh Kumar; Dey, Nilanjan; González-Crespo, Rubén (Information Sciences, 2023)
      This work proposes a strategy management technique based on hybrid peer-to-peer communication system. The main techniques used in the P2PC are: (i) Multi-objective optimization, (ii) Game theory technique, (iii) Non-linear ...
    • Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT 

      Vimal, S.; Khari, Manju; Dey, Nilanjan; González-Crespo, Rubén ; Harold Robinson, Yesudhas (Computer Communications, 01/02/2020)
      The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja