Mostrar el registro sencillo del ítem

dc.contributor.authorKhattak, Muhammad Irfan
dc.contributor.authorSaleem, Nasir
dc.contributor.authorGao, Jiechao
dc.contributor.authorVerdú, Elena
dc.contributor.authorParra Fuente, Javier
dc.date2022
dc.date.accessioned2022-12-09T13:28:08Z
dc.date.available2022-12-09T13:28:08Z
dc.identifier.issn00457906
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13885
dc.description.abstractA speech enhancement algorithm improves the perceptual aspects of a speech degraded by noise signals. We propose a phase-aware deep neural network (DNN) using the regularized sparse features for speech enhancement. A regularized sparse decomposition is applied to noisy speech and the obtained sparse features are combined with robust acoustic features to train DNN. Two time-frequency masks including ideal ratio mask (IRM) and ideal binary mask (IBM) are estimated. An intelligibility improvement filter is applied as post-processer to further improve the intelligibility. During waveform reconstruction, the estimated phase is used for better quality. The results show that the proposed algorithm achieves better speech intelligibility and quality. Besides, less residual noise and speech distortion is observed. By using the TIMIT and LibriSpeech databases, the proposed algorithm improved the intelligibility and quality by 14.61% and 42.11% over the noisy speech.es_ES
dc.language.isoenges_ES
dc.publisherComputers and Electrical Engineeringes_ES
dc.relation.ispartofseries;vol. 100, nº 107887
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0045790622001756?via%3Dihubes_ES
dc.rightsopenAccesses_ES
dc.subjectDNNes_ES
dc.subjectintelligibilityes_ES
dc.subjectphase estimationes_ES
dc.subjectsparsenesses_ES
dc.subjectspeech enhancementes_ES
dc.subjectspeech qualityes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleRegularized sparse features for noisy speech enhancement using deep neural networkses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.compeleceng.2022.107887


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem