Mostrar el registro sencillo del ítem

dc.contributor.authorAmin, Javeria
dc.contributor.authorAnjum, Muhammad Almas
dc.contributor.authorSharif, Muhammad
dc.contributor.authorJabeen, Saima
dc.contributor.authorKadry, Seifedine
dc.contributor.authorMoreno-Ger, Pablo
dc.date2022
dc.date.accessioned2022-10-20T11:51:25Z
dc.date.available2022-10-20T11:51:25Z
dc.identifier.issn1687-5265
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13684
dc.description.abstractA brain tumor is an abnormal enlargement of cells if not properly diagnosed. Early detection of a brain tumor is critical for clinical practice and survival rates. Brain tumors arise in a variety of shapes, sizes, and features, with variable treatment options. Manual detection of tumors is difficult, time-consuming, and error-prone. Therefore, a significant requirement for computerized diagnostics systems for accurate brain tumor detection is present. In this research, deep features are extracted from the inceptionv3 model, in which score vector is acquired from softmax and supplied to the quantum variational classifier (QVR) for discrimination between glioma, meningioma, no tumor, and pituitary tumor. The classified tumor images have been passed to the proposed Seg-network where the actual infected region is segmented to analyze the tumor severity level. The outcomes of the reported research have been evaluated on three benchmark datasets such as Kaggle, 2020-BRATS, and local collected images. The model achieved greater than 90% detection scores to prove the proposed model's effectiveness.es_ES
dc.language.isoenges_ES
dc.publisherComputational Intelligence and Neurosciencees_ES
dc.relation.ispartofseries;vol. 2022
dc.relation.urihttps://www.hindawi.com/journals/cin/2022/3236305/es_ES
dc.rightsopenAccesses_ES
dc.subjectMRIes_ES
dc.subjectfusiones_ES
dc.subjectimageses_ES
dc.subjectgliomaes_ES
dc.subjectsegmentationes_ES
dc.subjectnetworkes_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleA New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifieres_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1155/2022/3236305


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem