• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Predicting Posttraumatic Stress Disorder Among Survivors of Recent Interpersonal Violence

    Autor: 
    Morris, Matthew C.
    ;
    Sanchez-Saez, Francisco
    ;
    Bailey, Brooklynn
    ;
    Hellman, Natalie
    ;
    Williams, Amber
    ;
    Schumacher, Julie A.
    ;
    Rao, Uma
    Fecha: 
    2022
    Palabra clave: 
    PTSD; prediction; interpersonal violence; women; longitudinal; assault; JCR; Scopus
    Revista / editorial: 
    SAGE Journals
    Citación: 
    Morris, M. C., Sanchez-Sáez, F., Bailey, B., Hellman, N., Williams, A., Schumacher, J. A., & Rao, U. (2022). Predicting Posttraumatic Stress Disorder Among Survivors of Recent Interpersonal Violence. Journal of Interpersonal Violence, 37(13–14), NP11460–NP11489. https://doi.org/10.1177/0886260520978195
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/13362
    DOI: 
    https://doi.org/10.1177/0886260520978195
    Dirección web: 
    https://journals.sagepub.com/doi/10.1177/0886260520978195
    Resumen:
    A substantial minority of women who experience interpersonal violence will develop posttraumatic stress disorder (PTSD). One critical challenge for preventing PTSD is predicting whose acute posttraumatic stress symptoms will worsen to a clinically significant degree. This 6-month longitudinal study adopted multilevel modeling and exploratory machine learning (ML) methods to predict PTSD onset in 58 young women, ages 18 to 30, who experienced an incident of physical and/or sexual assault in the three months prior to baseline assessment. Women completed baseline assessments of theory-driven cognitive and neurobiological predictors and interview-based measures of PTSD diagnostic status and symptom severity at 1-, 3-, and 6-month follow-ups. Higher levels of self-blame, generalized anxiety disorder severity, childhood trauma exposure, and impairment across multiple domains were associated with a pattern of high and stable posttraumatic stress symptom severity over time. Predictive performance for PTSD onset was similarly strong for a gradient boosting machine learning model including all predictors and a logistic regression model including only baseline posttraumatic stress symptom severity. The present findings provide directions for future work on PTSD prediction among interpersonal violence survivors that could enhance early risk detection and potentially inform targeted prevention programs.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Predicting_Posttraumatic _Stress.pdf
    Tamaño: 1008.Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    21
    55
    68
    45
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    112
    148
    96

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predicting pain among female survivors of recent interpersonal violence: A proof-of-concept machine-learning approach 

      Lannon, Edward; Sanchez-Saez, Francisco ; Bailey, Brooklynn; Hellman, Natalie; Kinney, Kerry; Williams, Amber; Nag, Subodh; Kutcher, Matthew E.; Goodin, Burel R; Rao, Uma; Morris, Matthew C. (Public Library of Science, 2021)
      Interpersonal violence (IPV) is highly prevalent in the United States and is a major public health problem. The emergence and/or worsening of chronic pain are known sequelae of IPV; however, not all those who experience ...
    • Data Resource Profile: Results Analysis Base of Navarre (BARDENA) 

      Gorricho, Javier; Leache, Leire; Tamayo, Ibai; Sánchez-Sáez, Francisco; Almirantearena, Maite; San Román, Edurne; Ballaz, Jerónimo; Turumbay, Javier; Librero, Julián (International Journal of Epidemiology, 2023)
      Spain has a decentralized health system that operates as a network of 17 regional health services. It is publicly funded (mainly from taxes), and provides universal, free of charge, needs-based care coverage to the resident ...
    • Tool Use for Early Detection of Cerebral Palsy: A Survey of Spanish Pediatric Physical Therapists 

      Merino-Andres, Javier; Hidalgo-Robles, Álvaro; Perez-Nombela, Soraya; Williams, Sian A.; Paleg, Ginny; Fernandez-Rego, Francisco Javier (Pediatric physical therapy, 2022)
      Purpose: The purpose of this study was to assess the use of diagnostic assessment tools in pediatric physical therapy practice in Spain. Best practice recommendations indicate the timely use of key assessment tools to ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja